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A matrix is called weakly Hadamard if its entries are 
from {0, −1, 1} and its non-consecutive columns (with some 
ordering) are orthogonal. Unlike Hadamard matrices, there 
is a weakly Hadamard matrix of order n for every n ≥ 1. 
In this work, graphs for which their Laplacian matrices can 
be diagonalized by a weakly Hadamard matrix are studied. 
A number of necessary and sufficient conditions are verified 
along with identification of numerous families of graphs 
whose Laplacian matrices can be diagonalized by a weakly 
Hadamard matrix.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Laplacian matrix of a graph G on n vertices is an n × n matrix L(G) such that 
its (i, j) entry for i �= j equals −1 if the vertices i and j are adjacent, the (i, i) entry 
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equals the degree of the vertex i in G, and all other entries are 0. An n × n matrix is a 
Hadamard matrix of order n if its entries are equal to either 1 or -1, and

HtH = nIn.

One of the interesting questions in the spectral graph theory is about the structure 
of the eigenvectors of matrices associated with graphs. Barik, Fallat and Kirkland in 
[3] studied graphs for which their Laplacian matrix can be diagonalized by a Hadamard 
matrix H. More precisely, they considered graphs on n vertices such that their Laplacian 
matrix has n orthogonal eigenvectors with entries from the set {−1, 1}. A graph with this 
property is called a Hadamard diagonalizable graph. It turns out that there is a natural 
and fruitful connection between Hadamard diagonalizable graphs and graphs possessing 
perfect quantum state transfer, see, for instance, [5,11]. A connection was also made 
between balancedly splittable Hadamard matrices and Hadamard diagonalizable strongly 
regular graphs in [12]. Here we extend and expand upon the results in [3] by introducing 
zero to the entries of the eigenvectors as well as relaxing orthogonality condition among 
vectors within eigenspaces.

If the entries are restricted to real numbers, it is well-known that if H is an n × n

Hadamard matrix, then n is 1, 2, or a multiple of 4. However, it is not known if there 
exists a Hadamard matrix of order n for n = 4k, k ≥ 1. The Hadamard matrix conjecture, 
sometimes called Paley’s conjecture, states that for every n = 4k, k ≥ 1 there exists a 
Hadamard matrix of order n. A well-known method of constructing Hadamard matrices 
is Sylvester’s construction. This construction starts with the matrix

H2 =
(

1 1
1 −1

)

and then for any positive integer k defines the Hadamard matrix H2k = H2⊗H2k−1 , where 
the operation ⊗ denotes the tensor (or Kronecker) product of matrices. The matrices 
produced by this construction are called Sylvester Hadamard. This construction implies 
that there is a Hadamard matrix of order 2k for all k ≥ 1. Additionally, Paley showed 
the existence of one of the largest classes of Hadamard matrices, those of order 1 +p and 
2(1 + p) for prime powers p, with p ≡ 3 (mod 4) and p ≡ 1 (mod 4). There are other 
sporadic examples of Hadamard matrices. For instance, it is not difficult to see that if 
H1 and H2 are both Hadamard matrices then their tensor product H1 ⊗ H2 is also a 
Hadamard matrix.

The absence of definitive knowledge about the existence of Hadamard matrices makes 
characterizing graphs that are Hadamard diagonalizable challenging. In fact, a complete 
graph on n vertices is Hadamard diagonalizable if and only if a Hadamard matrix of 
order n exists [3]. This means that determining which complete graphs are Hadamard 
diagonalizable requires first demonstrating that a Hadamard matrix of a given order n
exists, and hence resolving a famous open problem (the Hadamard conjecture).

In this work, we generalize the notion of Hadamard matrices and introduce a family 

of matrices with two properties: 1) the entries of the matrix are from the set {−1, 0, 1}; 
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2) there is an ordering of the columns of the matrix so that the non-consecutive columns 
are orthogonal. The consecutive columns can be either orthogonal or not orthogonal. 
The second condition implies that the product of any such matrix with its transpose 
is a tridiagonal matrix. We call a matrix with these two properties a weakly Hadamard 
diagonalizable matrix and denote it by WHD. We investigate graphs for which their 
Laplacian matrix can be diagonalized by a weakly Hadamard matrix. We note here 
that investigating structured eigenbases associated with specific matrices has occurred 
previously and is of interest to the community, see for example, [1].

Definition 1.1. A graph is weakly Hadamard diagonalizable if its Laplacian matrix L can 
be diagonalized with a weakly Hadamard matrix. In other words, if L can be written as 
L = PDP−1, where D is a diagonal matrix and P has the properties that all the entries 
of P are from {−1, 0, 1} and that P tP is a tridiagonal matrix.

Clearly, any Hadamard diagonalizable graph is also weakly Hadamard diagonalizable. 
However, the converse need not hold in general.

Example 1.2. Let X be the complete graph K4 minus one edge. Then L(X) is weakly 
Hadamard diagonalizable by the following matrix P .

L(X) =

⎡
⎢⎣

2 0 −1 −1
0 2 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎦ , P =

⎡
⎢⎣

1 1 1 0
1 −1 1 0
1 0 −1 1
1 0 −1 −1

⎤
⎥⎦ .

However, X is not Hadamard diagonalizable as it is not a regular graph.

Consider a set of vectors B = {v1, v2, . . . , vk} in Rn. We say the vectors in B are 
quasi-orthogonal if there is an ordering of the vectors of B such that non-consecutive 
vectors are orthogonal. So if P is a matrix whose columns are the vectors of B, in the 
given ordering, then P tP is a tridiagonal matrix. Since eigenvectors corresponding to 
distinct eigenvalues are orthogonal, in our approach to find graphs that are WHD, it is 
sufficient to find a quasi-orthogonal basis for each eigenspace associated with distinct 
eigenvalues of the Laplacian matrix.

Proposition 1.3. A graph is WHD if there exists a quasi-orthogonal basis for each 
eigenspace in which the entries of every vector are from {−1, 0, 1}.

Proposition 1.4. If X is a regular graph then X is WHD if and only if the adjacency 
matrix of X has a basis of quasi-orthogonal eigenvectors with all entries from {−1, 0, 1}.

Throughout this paper, 1 denotes the all ones vector, and ei denotes the standard 
basis vector; i.e. every entry is equal to zero except the ith entry which is equal to one. 

The m ×m identity matrix is denoted by Im, and Jm is the m ×m all ones matrix. The 
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dimension of these vectors will be clear from context. A vector χ = [χi] in Rn will be 
called a characteristic vector for a set S ⊂ {1, 2, . . . , n} = [n], if

χi =
{

1, if i ∈ S;
0, otherwise.

Suppose A is an n ×n matrix, we use σ(A) to denote the spectrum of A. Let λ be an 
eigenvalue for A. We refer to an eigenvector associated with λ as a λ-eigenvector, and an 
eigenbasis for the eigenspace associated with λ as a λ-eigenspace, and may denote such 
a basis by Eλ.

First we show that the complete graph Kn is WHD for every value of n ≥ 1. Note 
that this is not the case in the usual Hadamard diagonalizable graphs.

Lemma 1.5. For every integer n ≥ 1 the graph Kn is WHD.

Proof. The complete graph Kn is (n − 1)-regular, thus 1 is an eigenvector of L(Kn) =
nIn − Jn corresponding to the eigenvalue 0. Further, the vectors vi = ei − ei+1 for 
i ∈ {1, . . . , n − 1} form a basis for the eigenspace corresponding to the eigenvalue n. The 
vectors vi and vj are orthogonal for every i and j with i − j > 1, this completes the 
proof. �

In this paper we first give some basic results for WHD graphs. We show some of the 
differences and similarities between Hadamard diagonalizable graphs and WHD graphs. 
In Section 3 we provide conditions on graphs that are sufficient in order to produce 
WHD graphs using products of graphs. In Section 4, we show that join of any number of 
WHD graphs is WHD if their sizes satisfy in a newly defined partition called recursively 
balanced partition. We also provide more families of joins of graphs such as a complete 
graph minus a matching that are WHD. In Section 5, we show that several families of 
strongly-regular graphs are WHD. Finally, we list some interesting questions that remain 
open and provide a complete list of all graphs on at most nine vertices that are WHD 
in an Appendix.

2. Basic properties of WHD graphs

In this section we extend some of the existing results on Hadamard diagonalizable 
graphs to weakly Hadamard diagonalizable graphs. For two graphs X and Y , their 
disjoint union is denoted by X � Y , and the complement of X is denoted by Xc.

Lemma 2.1. [3] If X is a Hadamard diagonalizable graph then

(1) X is regular;
(2) all of the Laplacian eigenvalues of X are even integers;

(3) X �X is Hadamard diagonalizable;
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(4) Xc is Hadamard diagonalizable.

Example 1.2 shows that Part 1 of Lemma 2.1 need not hold in general for WHD 
graphs. We show that a relaxed version of Part 2 of Lemma 2.1 holds for WHD graphs.

Lemma 2.2. If X is WHD, then all the Laplacian eigenvalues of X are integers.

Proof. If X is WHD, then there is a basis of eigenvectors of L(X) with all entries from 
the set {0, −1, 1}. For any eigenvalue λ, choose any such eigenvector y. Then from the 
eigen-equation L(X)y = λy, it follows that L(X)y must be integral, and hence λ must 
be an integer, since y has entries {0, −1, 1} and is nonzero. �

Using Proposition 2.7 below, the cycle C6 is WHD and its Laplacian eigenvalues are 
{0, 1, 1, 3, 3, 4} hence an example where some of the eigenvalues are odd integers.

Similarly, a more general version of Part 3 of Lemma 2.1 holds for WHD graphs.

Lemma 2.3. If X and Y are WHD graphs, then X � Y is also a WHD graph.

Proof. Since X and Y are WHD, there is a basis for X (resp. Y ) of vi (resp. wi) that 
satisfy Proposition 1.3. Then [1, 0]t ⊗ vi and [0, 1]t ⊗ wi also satisfy the conditions of 
Proposition 1.3 for X � Y . �

Lemma 9 of [3] implies that K4 � K8 is not Hadamard diagonalizable. Therefore, 
Lemma 2.3 is not true for Hadamard diagonalizable graphs.

Finally, Part 4 of Lemma 2.1 can be extended to WHD, but an extra condition is 
needed on the graph.

Lemma 2.4. If X is a connected WHD graph, then Xc is also a WHD graph.

Proof. Assume that X is a connected WHD graph on n vertices. Let vi be an eigenvector 
for L(X) with the eigenvalue λi. Assume that P−1L(X)P is a diagonal matrix and P tP

is tridiagonal for the matrix P with columns v1 = 1, v2, . . . , vn. Since X is connected, vi
is orthogonal to 1 for i = 2, . . . , n.

Then L(Xc) = nI − L(X) − J , so

L(Xc)v1 = (nI − L(X) − J)1 = (n− 0 − n)1 = 01 = 0,

L(Xc)vi = (nI − L(X) − J)vi = (n− λi − 0)vi = (n− λi)vi.

This means that the columns of P are also eigenvectors for L(Xc), so Xc is WHD with 
P . �

If X is disconnected and WHD, then Xc is not necessarily a WHD graph. A simple 

such example illustrating this claim is X = K1 � K2. Observe that X is WHD by 
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Lemma 2.3, but Xc = P3, the path on 3 vertices, and L(P3) has eigenvalues 0, 1 ±
√

2, 
and so Lemma 2.2 implies X is not WHD.

The previous proof required that all eigenvectors, other than the all ones vector, 
be orthogonal to 1. This can be achieved in a regular disconnected graph if all the 
components have the same size.

Lemma 2.5. Assume that X is a disconnected WHD graph on n vertices. If X is regular 
and its components are of equal size, then Xc is also a WHD graph.

Proof. Assume that the WHD graph X has k components G1, G2, . . . , Gk of equal size. 
Thus, there is a diagonalizable basis of eigenvectors of L(X), say v1, . . . , vn, with entries 
from {0, −1, 1}. Let wi be the characteristic vector for the component Gi, i = 1, . . . , k. 
Then the set of vectors wi−1 − wi, where i = 2, 3, . . . , k, along with 1 form a quasi-
orthogonal basis of the eigenspace corresponding to the eigenvalue zero.

As in the previous proof, each of vk+1, . . . , vn are eigenvectors for L(Xc). Thus there 
is a quasi-orthogonal basis for each eigenspace. �

Lemmas 1.5 and 2.5 imply that

Kn,n = (Kn �Kn)c

is WHD. However, the following lemma shows that Lemmas 2.5 and 2.4 cannot be 
extended to all bipartite graphs.

Lemma 2.6. The graph Kn,m is WHD if and only if m = n.

Proof. Since Kn,n = (Kn �Kn)c, Lemmas 1.5 and 2.5 show that Kn,n is WHD.
If n �= m, then n + m is an eigenvalue for Kn,m with multiplicity 1. If the vertices 

of Kn,m are ordered so that the n vertices with degree m occur first, then the (n + m)-
eigenspace is spanned by the vector with the first n entries equal to m, and the remaining 
m entries equal to −n. Since m �= n there is no vector in this eigenspace with entries 
from the set {0, −1, 1}. Thus, by Proposition 1.3, Kn,m is not WHD when n �= m. �

We end this section with a note about which cycles are weakly Hadamard diagonal-
izable.

Proposition 2.7. The cycle Cn is WHD if and only if n = 3, 4 or 6.

Proof. The eigenvalues of the adjacency matrix of the cycle Cn are of the form

ωk = 2 cos
(

2kπ
n

)
, for any k = 0, 1, 2, . . . , n− 1.

For Cn to have integral spectrum, we must have cos
( 2kπ

n

)
∈ {0, ±1, ±1

2}. The only roots 
of unity that verify this property are the 3-rd, 4-th and 6-th roots of unity. Now we prove 

that for n = 3, 4, 6, the cycle Cn is WHD.
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The cycle C3 is WHD because it is a complete graph. Since C4 = K2,2, it is WHD by 
Lemma 2.6.

For C6, the Laplacian eigenvalues are {0(1), 1(2), 3(2), 4(1)} and the columns of the 
following form a quasi-orthogonal eigenbasis

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0
1 −1 0 1 0 1
1 1 −1 −1 −1 1
1 −1 1 0 −1 0
1 1 0 1 0 −1
1 −1 −1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, C6 is WHD. �
3. Graph products

In [3], it is shown that for many graph products, if the constituent graphs are 
Hadamard diagonalizable, then the product graph is also Hadamard diagonalizable. In 
this section we extend these results to WHD graphs for the following graph products. 
Let X and Y be graphs.

(1) The Cartesian product of X and Y , denoted X � Y is the graph with vertex set 
V (X) × V (Y ) and

(u1, v1) ∼X � Y (u2, v2) ⇐⇒
{
u1 = u2 or v1 ∼Y v2,

v1 = v2 or u1 ∼X u2.

(2) The direct product (tensor product) of X and Y , denoted X × Y , is the graph with 
vertex set V (X) × V (Y ) and

(u1, v1) ∼X×Y (u2, v2) ⇐⇒ u1 ∼X u2 and v1 ∼Y v2.

(3) The strong product X � Y of the graph X and Y is the graph with vertex-set 
V (X) × V (Y ) such that

(u1, v1) ∼X�Y (u2, v2) ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
u1 = u2 or v2 ∼Y v2,

v1 = v2 or u1 ∼X u2,

u1 ∼X u2 and v1 ∼Y v2.

For each of these products, if the graphs X and Y are regular, then the product graph 
is also regular and it is straightforward to calculate its degree. Further, the eigenvectors 
for the Laplacian matrix of each graph product can be calculated from the eigenvectors 

of the constituents.
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Lemma 3.1. Consider graphs X and Y on n and m vertices, respectively. Let λ1, λ2, . . . , λn

be the eigenvalues of L(X), and μ1, μ2, . . . , μm be the eigenvalues of L(Y ). Further as-
sume that ui is an eigenvector of L(X) for eigenvalue λi, and vj an eigenvector of L(Y )
corresponding to the eigenvalue μj,

(1) The eigenvalues of L(X � Y ) are λi + μj, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Moreover, 
ui ⊗ vj is an eigenvector of L(X � Y ) for the eigenvalue λi + μj.

(2) The eigenvalues of L(X × Y ) are λiμj for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Moreover, 
ui ⊗ vj is an eigenvector of L(X × Y ) corresponding to the eigenvalue λiμj.

(3) The eigenvalues of L(X �Y ) are of the form (λi + 1)(μj + 1) − 1, for 1 ≤ i ≤ n and 
1 ≤ j ≤ m. Again, the eigenvectors are of the form ui ⊗ vj.

Since we have the eigenvectors for each of these graph products, we can see that 
if the constituent graphs are Hadamard diagonalizable, then the product graph is also 
Hadamard diagonalizable.

Theorem 3.2. [3] If X and Y are both Hadamard diagonalizable graphs of order n and 
m respectively then X � Y is Hadamard diagonalizable for � ∈ { � , �, ×}.

The proofs for these results are straightforward. If H1 and H2 are Hadamard matri-
ces that diagonalize X and Y respectively, then H1 ⊗ H2 is also a Hadamard matrix 
and it diagonalizes the graph product. This argument cannot be generalized to WHD 
graphs. Consider WHD graphs X and Y with matrices P1 and P2 that diagonalize X
and Y (respectively) such that P t

1P1 and P t
2P2 are both tridiagonal. The matrix P1 ⊗P2

diagonalizes the graph X � Y (as well as X × Y and X � Y ), but (P1 ⊗P2)t(P1 ⊗P2) is 
not necessarily tridiagonal. So an extra condition is required to guarantee that the graph 
products produce WHD graphs.

Proposition 3.3. Suppose graphs X and Y are WHD with the matrix of eigenvectors PX

and PY , respectively, such that P t
XPX is a diagonal matrix. Then X �Y is WHD for any 

� ∈ { � , �, ×}.

Proof. Since PX and PY have entries {0, −1, 1}, so does P = PX ⊗PY . If P t
XPX = D is 

a diagonal matrix, then P tP = P t
XPX ⊗P t

Y PY = D⊗P t
Y PY is tridiagonal. Hence X �Y

is WHD with the weakly Hadamard matrix P . �
Corollary 3.4. If X is Hadamard diagonalizable and Y is a WHD graph, then X � Y is 
WHD for any � ∈ { � , �, ×}.

Note that Proposition 3.3 does not characterize the products of graphs that are WHD. 
For example we know that Knm = Kn � Km is WHD, but this graph is not included in 
Proposition 3.3. In particular, the matrix P = PKn

⊗ PKm
, has entries from {0, −1, 1}
and it diagonalizes Knm, but it does not give a tridiagonal matrix when multiplied by 
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its transpose on the right. So this natural construction of eigenvectors with entries from 
{0, −1, 1} for the product graph may not give a quasi-orthogonal basis of eigenvectors.

4. Joins of graphs

Let X1 and X2 be graphs on n1 and n2 vertices, respectively. The join of X1 and X2, 
denoted by X1 ∨X2, is the graph formed by taking the union of X1 and X2 and adding 
every edge between the vertices in X1 and the vertices in X2. Assume σ(L(X1)) =
{0 = λ1, . . . , λn1} with eigenvectors {v1

j}n1
j=1 and σ(L(X2)) = {0 = μ1, . . . , μn2} with 

eigenvectors {v2
j }n2

j=1. Then σ(L(X1 ∨ X2)) = {0, n1 + n2, λ2 + n2, . . . , λn1 + n2, μ2 +
n1, . . . , μn2 + n1}. The eigenvectors of L(X1 ∨ X2) are 1 for the eigenvalue 0; ei ⊗ vij
with i = 1, 2 and j �= 1 for the eigenvalues other than 0 and n1 + n2. The eigenvector 
corresponding to the eigenvalue n1 + n2 is a vector where its first n1 entries are equal 
to n2 and the last n2 entries are equal to −n1. More generally, an eigenvector of L(X1 ∨
X2 ∨ · · · ∨Xk) with k ≥ 3 corresponding to the eigenvalue 

∑k
i=1 ni can be of the form 

(ei ⊗ nj1) − (ej ⊗ ni1) for i, j ∈ {1, 2, . . . , k}.
The following result for Hadamard diagonalizable graphs can be improved in the case 

of WHD graphs.

Lemma 4.1. [3, Lemma 7] If X is a Hadamard diagonalizable graph, then X ∨X is also 
a Hadamard diagonalizable graph.

We define an integer partition of an integer n to be recursively balanced partition if 
it satisfies the following. The partition with only one part, i.e. P = [n], is defined to 
be a recursively balanced partition. A partition P = [n1, n2, . . . , nk], k ≥ 2 is called a 
recursively balanced partition if there is a partition Q = [Q1, Q2, . . . , Q�] of the parts of 
P with Qi = [ni1 , . . . , niki

] such that

(1) for any i, j ∈ {1, . . . , �}

ni1 + ni2 + · · · + niki
= nj1 + nj2 + · · · + njkj

,

and
(2) each sub-partition Qi is also a recursively balanced partition.

For example, the recursively balanced partitions of 8 are:

[8], [4, 4], [4, 2, 2], [4, 2, 1, 1], [4, 1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 1, 1],

[2, 2, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1].

Proposition 4.2. If P = [n1, n2, . . . , nk] is a recursively balanced partition, then there are 
k − 1 equations of the form
ni1 + ni2 + · · · + nim = nj1 + nj2 + · · · + njn .
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For example, the partition [4, 2, 1, 1] has the equations

4 = 2 + 1 + 1, 2 = 1 + 1, 1 = 1.

Lemma 4.3. Let Xi for i = 1, . . . , k be connected WHD graphs on ni vertices. If 
[n1, n2, . . . , nk] is a recursively balanced partition, then 

∨k
i=1 Xi is a WHD graph.

Proof. Assume that Xi is a WHD graph on ni vertices, for i ∈ {1, . . . , k}, and 
[n1, n2, . . . , nk] is a recursively balanced partition. For each Xi, with i ∈ {1, . . . , k}, 
let vij for j ∈ {1, . . . , ni} be a set of eigenvectors of L(Xi) with entries from {0, −1, 1}
that are quasi-orthogonal with the given ordering. For each i, assume that vi1 = 1 and 
that the eigenvalue for vij is λi

j .
We construct a set of eigenvectors for L(

∨k
i=1 Xi) with entries from {0, −1, 1}, and 

show that they satisfy the quasi-orthogonal property. The eigenvalue 0 has the eigen-
vector 1, and the eigenvalues λi

j +
∑

i�=j ni have eigenvectors ei ⊗ vij , for j �= 1. These 
vectors are clearly linearly independent, have entries from {0, −1, 1} and have the quasi-
orthogonal property.

Now [n1, n2, . . . , nk] is a recursive balanced partition; this means that there are exactly 
k − 1 equations of the form

ni1 + ni2 + · · · + nim = nj1 + nj2 + · · · + njn .

For each equation, define a vector

v = (1)
m∑
�=1

(ei� ⊗ 1) + (−1)
n∑

�=1

(ej� ⊗ 1)

This vector is a linear combination of vectors of the form ei ⊗ nj1 − ej ⊗ ni1, so it is in 
the 

∑
i ni-eigenspace. Further these vectors are orthogonal since the partitions are either 

disjoint, or refinements. �
We can apply this to complete multipartite graphs, since they are joins of empty 

graphs.

Corollary 4.4. The complete bipartite Kn,n is WHD. The complete multipartite graph 
Kn1,n2,...,nk

is WHD if [n1, n2, . . . , nk] is a recursively balanced partition.

Note that the 12th graph in the appendix on 8 vertices (this is the graph K3,2,2,1) 
shows that the condition in the previous corollary does not characterize complete mul-
tipartite graphs that are WHD.

Similar to the case for the complete graphs, less can be said about when a complete 
bipartite graph is a Hadamard diagonalizable graph.

Lemma 4.5. If there is a Hadamard matrix of order n, then the complete bipartite graph 
K is Hadamard diagonalizable.
n,n
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Proof. Let H be a Hadamard matrix of order n. Without loss of generality we can 
consider the first row and column of H to be all ones vectors. Then

(
H H
H −H

)(
nI −J
−J nI

)(
Ht Ht

Ht −Ht

)
= diag(0, 2n2, . . . , 2n2, 4n2, 2n2, . . . , 2n2). �

For a given symmetric matrix A, we denote the spectrum of A by σ(A) =
{λ(n1)

1 , λ(n2)
2 , . . . , λ(n�)

� }, where λi �= λj when i �= j, and where nj denotes the multi-
plicity of the eigenvalue λj .

Lemma 4.6. Let X = Kk ∨Kn. If n − k ∈ {0, 1, 2}, then X is a WHD graph.

Proof. We have σ(L(X)) = {0(1), n(k−1), (n +k)(n)}. The all ones vector is an eigenvector 
for 0.

Order the vertices of X so that the vertices from Kk are the first k vertices. Then the 
vectors ei − ei+1, with i = 1, . . . , k − 1, are suitable eigenvectors for the n-eigenspace. 
Similarly, the vectors ei−ei+1 with i = k, . . . , n +k−1 are n −k−2 suitable eigenvectors 
for the (n + k)-eigenspace. The vector v = (1, 1, . . . , 1, −1, −1, . . . , −1, n − k − 1) where 
the first k entries are equal to 1, the next n − k − 1 entries are −1, and the last entry 
is equal to n − k − 1 is an (n + k)-eigenvector. Moreover, if n − k ∈ {0, 1, 2}, then the 
eigenvector v has entries from {1, 0, −1}. �
Lemma 4.7. Let X = H ∨ Kn where H is a WHD connected graph on k vertices. If 
n − k ∈ {0, 1, 2}, then X is a WHD graph.

Proof. Let σ(L(H)) = {0, λ(n1)
1 , λ(n2)

2 , . . . , λ(n�)
� }, then

σ(L(X)) = {0(1), (n + λ1)(n1), (n + λ2)(n2), . . . , (n + λ�)(n�), (n + k)(n)}.

The all ones vector is an eigenvector for 0.
Order the vertices of X so that the vertices from H are the first k vertices. Then 

denote the λi-eigenvectors that form a weakly Hadamard matrix which diagonalizes 
H by vij . These vectors, concatenated with n ones form suitable eigenvectors for the 
(n + λi)-eigenspace.

Similarly, the vectors ei−ei+1 with i = k, . . . , n +k−1 are n −k−2 suitable eigenvectors 
for the (n + k)-eigenspace. The vector v = (1, 1, . . . , 1, −1, −1, . . . , −1, n − k − 1) where 
the first k entries are equal to 1, the next n − k − 1 entries are −1, and the last entry 
is equal to n − k − 1 is an (n + k)-eigenvector. If n − k ∈ {0, 1, 2}, then the vector v
eigenvector has entries from {1, 0, −1}. �

We note that H ∨Kn = K2n−i\Hc if H has at least two vertices and i ∈ {0, 1, 2}. So 
the previous result can be seen as either a statement about the join of two graphs, or a 
statement about removing a subgraph from a complete graph.
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In the next two results, we provide other examples of the join of graphs that is WHD; 
in these examples one of the graphs is disconnected. Note that the complete graph Kn

minus s independent edges (matching) with s ≤ n

2 can be written as (K1 ∪K1) ∨ (K1 ∪
K1) ∨· · ·∨(K1∪K1) ∨Kn−2s. The following two results show that Kn minus a matching is 
WHD for n ≥ 4. Observe, that if n = 3, then K3 minus an edge is P3, which is not WHD.

Lemma 4.8. For n ≥ 4, the graph G obtained from Kn minus an edge is WHD.

Proof. Without loss of generality, consider the edge ε = {1, 2} and let G = Kn− ε. Then 
the Laplacian spectrum of G is given by: eigenvalue 0 of multiplicity 1, with eigenvector 
1; eigenvalue n − 2 of multiplicity 1, with eigenvector e1 − e2; and finally eigenvalue n
with multiplicity n − 2, with eigenbasis: bi = e1 + e2 − 2ei, for i = 3, 4, . . . , n.

We construct an eigenbasis with entries from {0, −1, 1} for the eigenvalue n − 2 as 
follows:

For n even (n = 2(k + 1)), consider:

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

−1
−1

0
0
0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1

−1
−1

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
1
1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

−1
0
0
0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

−1
0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , yk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
0
0
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For n odd (n = 2(l + 1) + 1), consider:

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

−1
−1

0
0
0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1

−1
−1

0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , xl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
1
1

−1
−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

−1
0
0
0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

−1
0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , yl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
0
0
1

−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
0
0
0
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the even case observe that {y1, y2, . . . , yk} forms a mutually orthogonal set and 
xi is orthogonal to {xi+2, xi+3, . . . , xk} for i = 1, . . . , k − 2. Finally observe that xi is 
orthogonal to yj for any i, j. Hence if we form the matrix M = [x1, x2, . . . xk|y1, y2, . . . yk], 
then it follows that M tM is a tridiagonal matrix.

Similarly, in the odd case we have that {y1, y2, . . . , yl} forms a mutually orthogonal 
set and x1 is orthogonal to {x3, x4, . . . xl}, x2 is orthogonal to {x4, x5, . . . xl}, and so-on 
xl−2 is orthogonal to xl, and that xi is orthogonal to yj for any i, j. Finally, note that 
z is orthogonal to {x1, x2, . . . , xl−1, y1, y2, . . . , yl−1}, but z is not orthogonal to either xl

nor yl. In this case we form the matrix M = [x1, x2, . . . xl−1|xl, z, yl|y1, y2, . . . yl−1] and 
it follows that M tM is a tridiagonal matrix. �
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If we wish to delete two independent edges from Kn, then we require n ≥ 6. Although 
it is true that the result holds for both n = 3, 4, it does not hold for n = 5. In the latter 
case an eigenbasis for the eigenvalue n is given by

⎡
⎢⎢⎢⎢⎢⎣

1
1
0
0

−2

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

1
1

−1
−1

0

⎤
⎥⎥⎥⎥⎥⎦ ,

and it can be easily checked that it is not possible to construct an eigenbasis with entries 
from {0, −1, 1} for n in this case.

More generally, when we delete an edge from a graph we perturb the existing Laplacian 
matrix by adding the matrix

[
−1 1

1 −1

]

direct summed with the appropriate zero matrix. It is easy to see that the eigenvalues 
for this 2 × 2 matrix are 0, with eigenvector 1, and -2 with eigenvector a1 = e1 − e2. 
Using this basic fact, we can deduce the eigenvectors for the Laplacian of the complete 
graph with a matching removed.

For n ≥ 6, consider the Laplacian matrix of Kn − {ε1, ε2}, where ε1 = {1, 2} and 
ε2 = {3, 4}. If n is even, then the spectrum is: eigenvalue 0 of multiplicity 1, with 
eigenvector 1; eigenvalue n − 2 of multiplicity 2, with eigenvectors a1 and y1; and finally 
eigenvalue n with multiplicity n − 3, with eigenbasis {x1, x2, . . . , xk, y2, y3, . . . , yk} with 
k = n/2 −1. Similarly, for n odd we have Laplacian spectrum: eigenvalue 0 of multiplicity 
1, with eigenvector 1; eigenvalue n −2 of multiplicity 2, with eigenvectors a1 and y1; and 
finally eigenvalue n with multiplicity n −2, with eigenbasis {x1, x2, . . . , xl, y2, y3, . . . , yl, z}
with l = (n − 1)/2 − 1.

Since we established the quasi-orthogonal nature of these eigenvectors already above, 
it follows that Kn − {ε1, ε2} is a weakly Hadamard diagonalizable graph.

More generally, if m is a matching of size s, then without loss of generality we may 
assume that

m = {{1, 2}, {3, 4}, . . . , {2s− 1, 2s}}.

In this case the Laplacian spectrum for G −m is given by:

• For n even: we need n ≥ 2(s + 1). Eigenvalue 0 of multiplicity 1, with eigenvector 1; 
eigenvalue n − 2 of multiplicity s, with eigenbasis {a1, y1, y2, . . . , ys−1}; and finally 
eigenvalue n with multiplicity n − s − 1, with eigenbasis: {x1, x2, . . . , xk, ys, . . . , yk}
with k = n/2 − 1.
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• For n even: we need n ≥ 2(s +1) +1. Eigenvalue 0 of multiplicity 1, with eigenvector 
1; eigenvalue n −2 of multiplicity s, with eigenbasis {a1, y1, y2, . . . , ys−1}; and finally 
eigenvalue n with multiplicity n − s − 1, with eigenbasis: {x1, x2, . . . , xl, ys, . . . , yl, z}
with l = (n − 1)/2 − 1.

As observed above, since we established the quasi-orthogonal nature of these eigen-
vectors already above, it follows that Kn −m is WHD.

Corollary 4.9. For n ≥ 4, a complete graph Kn minus a matching of size s with s ≤ n

2
is WHD.

5. Strongly-regular graph families

In this section we exhibit some families of strongly-regular graphs that are WHD. All 
graphs in this section are regular, so it is sufficient to study the eigenbases corresponding 
to the adjacency matrix, as the Laplacian matrix is simply a translation of the adjacency 
matrix in this case. It is well-known that the adjacency matrix associated with a strongly-
regular graph has exactly three distinct eigenvalues: the degree d, a negative eigenvalue 
τ , and a positive eigenvalue θ.

The motivation for considering these graphs is that they all have the property that 
equality holds in the ratio bound (Theorem 5.1 below) and there is a well-known basis 
of 01-vectors for the span of the d-eigenspace and the τ -eigenspace.

The following is the well-known ratio bound for cocliques, which was originally estab-
lished by Delsarte (see [9]) and often attributed to Hoffman as well. Further details can 
be found in [10, Section 2.4]. Recall that a subset S of vertices in a graph is called an 
independent set (or coclique) if no two vertices in S are adjacent. The size of the largest 
independent set in a graph G is denoted by α(G).

Theorem 5.1. Let X be a d-regular graph whose adjacency matrix has the least eigenvalue 
τ . Then

α(X) ≤ |V (X)|
1 − d

τ

and, if equality holds for some coclique S with characteristic vector vS, then

vS − |S|
|V (X)|1

is an eigenvector with eigenvalue τ .

There is also a ratio bound for cliques, here we only state the result for strongly-regular 

graphs, but the bound holds more generally (see [9] or [10, Corollary 3.7.2]).
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Theorem 5.2. Let X be a strongly regular graph with degree d whose adjacency matrix 
has the least eigenvalue τ . Then

ω(X) ≤ 1 − d

τ

and, if equality holds for some clique C with characteristic vector vC, then

vC − |C|
|V (X)|1

is an eigenvector with eigenvalue θ.

We consider the following families of strongly regular graphs: Paley graphs, Kneser 
graphs K(n, 2), block graphs of orthogonal arrays and block graphs of designs. For each 
of these graphs, there is a set of characteristic vectors of some specified vertex sets that 
span both the d-eigenspace and the τ -eigenspace.

5.1. Paley graphs

Let F be a finite field of order q with q ≡ 1 (mod 4) and q = p2 for some prime 
number p. The vertices of the Paley graph, are the elements of F , and two vertices are 
adjacent if and only if their difference is a square in F . The next result is a standard and 
well-known result on Paley graphs (see [2,6,7] or more recently [10, Section 5.8]).

Theorem 5.3. Let P (p2) be a Paley graph with p2 ≡ 1 (mod 4). Then

(a) P (p2) is self complementary and arc transitive;
(b) P (p2) is a strongly-regular graph with parameters

(
p2, (p2 − 1)/2; (p2 − 5)/4, (p2 − 1)/4

)
;

(c) The eigenvalues for P (p2) and respective multiplicities are

(
p2 − 1

2

)(1)

,

(
p− 1

2

)( p2−1
2

)
,

(
−p + 1

2

)( p2−1
2

)
.

By Theorem 5.1 and 5.2

α(P (p2)) ≤ p2

1 − p2−1
−(1+p)

= p and ω(P (p2)) ≤ 1 − p2 − 1
−(1 + p) = p.

If F is a finite field of order p2 and E is the sub-field of order p, then the elements of 

E induce a clique in P (p2) of size p. Since a Paley graph P (p2) is self complementary, 
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we must also have a coclique of size p. This, along with the above bounds, implies 
that α(P (p2)) = p and ω(P (p2)) = p, and equality holds in both Theorem 5.1 and 
Theorem 5.2.

Let S∗ denote the set of nonzero squares in F . For any a in S∗ and any b in F , the set

S(a, b) = {ax + b : x ∈ E}

is a clique in P (p2). These cliques are the square translates of E.
The set S∗ and the set E∗, the non-zero elements in E, are both multiplicative sub-

groups of F . Further, E∗ ⊂ S∗, so the set S∗/E∗ is defined.

Lemma 5.4. Let a, a′ ∈ S∗/E∗ and b, b′ ∈ F . Then

(1) |S(a, b) ∩ S(a, b′)| = 0 if b, b′ ∈ F/aE with b �= b′, and
(2) S(a, b) = S(a, b′) if b, b′ ∈ aE.

Proof. For Statement 1, assume on the contrary that S(a, b) ∩ S(a, b′) �= ∅. Let y ∈
S(a, b) ∩ S(a, b′). Then y can be written as y = ax + b = ax′ + b′ for some x, x′ ∈ E. 
Hence a(x −x′) = b′−b or b −b′ is a multiple of a which is not possible since b �= b′ ∈ F/aE. 
Therefore, S(a, b) ∩ S(a, b′) = ∅.

For Statement 2, let z ∈ S(a, b). Then z = ax + b for some x ∈ E. Since b, b′ ∈ aE we 
have b = ae and b′ = ae′ for some e, e′ ∈ E. Whence,

z = ax + b = ax + ae + ae′ − ae′ = a(x + e− e′) + ae′ = ax′ + b′,

where x′ = x + e − e′ ∈ E which implies that z ∈ S(a, b′). Therefore, S(a, b) ⊆ S(a, b′). 
Similarly, we have S(a, b′) ⊆ S(a, b) and the result follows. �
Lemma 5.5. Let a, a′ ∈ S∗/E∗ with a �= a′. Consider S(a, b), with b ∈ F/aE, and S(a′, b′), 
with b′ ∈ F/a′E. Then |S(a, b) ∩ S(a′, b′)| = 1.

Proof. For a �= a′ we have aE ∩ a′E = {0} since for any α ∈ aE ∩ a′E, we have that 
α = ae = a′e′ for some e, e′ ∈ E. Hence a = a′e′e−1 = a′β, where β = e′e−1 ∈ E which 
is a contradiction since a, a′ ∈ S∗/E∗. Therefore, aE ∩ a′E = {0}.

Let z1, z2 ∈ S(a, b) ∩ S(a′, b′) with z1 �= z2. Then z1 = aγ1 + b = a′γ′
1 + b′ and 

z2 = aγ2 + b = a′γ′
2 + b′ for some γ1, γ′

1, γ2, γ′
2 ∈ E. Hence a(γ1 − γ2) = a′(γ′

1 − γ′
2) and 

a(γ1 − γ2), a′(γ′
1 − γ′

2) ∈ aE ∩ a′E. Thus γ1 = γ2 and γ′
1 = γ′

2 which implies that z1 = z2

and we reach a contradiction. Therefore, |S(a, b) ∩ S(a′, b′)| ≤ 1.
Finally, Statement 1 of Lemma 5.4 implies that the sets S(a, b) with b ∈ F/aE parti-

tion the elements of F into p parts each of size p. Since | ∪b∈F/aE S(a, b) ∩ S(a′, b′)| = p, 

the fact that |S(a, b) ∩ S(a′, b′)| ≤ 1 actually implies |S(a, b) ∩ S(a′, b′)| = 1. �
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For a fixed a ∈ S∗/E∗, define a set of cliques as follows

Sa = {S(a, b) | b ∈ F/aE}.

Lemma 5.6. The set of characteristic vectors of the cliques in the set ∪a∈S∗/E∗Sa spans 
the direct sum of the p−1

2 -eigenspace and 1.

Proof. From Theorem 5.2 we have that the characteristic vectors are in the direct sum 
of the p−1

2 -eigenspace and 1.
Form a matrix M with the first |F/aE| = p columns being the characteristic vectors of 

the sets Sa (fix a and vary the values of b). The next p columns are all the characteristic 
vectors of the cliques in the sets Sa′ , where a′ �= a is in S∗/E∗. Now continue in this 
manner producing such columns for all p+1

2 values of a ∈ S∗/E∗.
It is clear that the dot product of any two characteristic vectors for two sets from the 

same Sa is 0. Similarly, the dot product of two vectors from different sets Sa is 1. With 
this we can express the matrix M tM as follows

M tM = pI p(p+1)
2

+
((

J p+1
2

− I p+1
2

)
⊗ Jp

)
.

The spectrum of Jp is {p(1), 0(p−1)}. The spectrum of J p+1
2

−I p+1
2

is {p−1
2

(1)
, −1( p−1

2 )}, 
and the spectrum of (J p+1

2
− I p+1

2
) ⊗ Jp is

{
p(p− 1)

2

(1)
,−p( p−1

2 ), 0( p2−1
2 )

}
.

Finally, it follows that the spectrum of M tM is found by adding p to each of these 
eigenvalues. So the spectrum of M tM is

{
p(p + 1)

2

(1)
, 0( p−1

2 ), p( p2−1
2 )

}
.

The rank of M is equal to the rank M tM , which is p
2+1
2 , which is equal to the dimension 

of the p−1
2 -eigenspace. �

In a similar fashion, we can apply similar notions in order to exhibit a quasi-orthogonal 
basis for the p−1

2 -eigenspace associated with the adjacency matrix of a Paley graph.
Let a ∈ S∗/E∗ and order the elements of F/aE and label them by b1, b2, . . . , bp. Then 

S(a, bi) is a clique in the Paley graph. Define χa,bi to be the characteristic vector of 
S(a, bi) and let
χa,i = χa,bi − χa,bi+1 .
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Then for a ∈ S∗/E∗ and b ∈ S∗/E∗

χa,i · χb,j =

⎧⎪⎪⎨
⎪⎪⎩

2p if a = b and i = j,

−p if a = b and |i− j| = 1,
0 otherwise.

There are p2−1
2(p−1) = p+1

2 choices for an a ∈ S∗/E∗, and for each a there are p choices for 
i. So for each a there are p − 1 vectors χa,i, and in total there are p

2−1
2 vectors χa,i.

Order the elements in S∗/E∗ and label them by a1, a2, . . . , a p+1
2

. Define a matrix M
to have columns χak,i and order them so that χak,i occurs before χa�,j whenever k < �; 
and whenever k = � and i < j. Then

M tM = I p+1
2

⊗D,

where D is a tridiagonal matrix of size (p − 1) × (p − 1) with all entries equal to 2p on 
the main diagonal and all entries equal to −p on the super- and sub-diagonals.

The eigenvalues of D are then

2p− 2p cos
(

kπ

p + 1

)
, k = 1, 2, . . . , p.

So D has full rank. It follows that the rank of M tM is p2−1
2 , which implies that the 

vectors χa,i span the p−1
2 -eigenspace. We restate this result as a lemma.

Lemma 5.7. Let p be a prime power with p2 ≡ 1 (mod 4). Then the vectors χa,i, with 
entries {−1, 0, 1} for a ∈ S∗ and i ∈ {1, . . . , p − 1}, form a quasi-orthogonal basis of the 
p−1
2 -eigenspace of P (p2).

Since the Paley graphs are self complementary, we can construct a quasi-orthogonal 
basis for the −p+1

2 -eigenspace. Let N ∗ denote the set of nonsquares in F . For any a in 
N ∗ and any b in F , the set

S(a, b) = {ax + b : x ∈ E}

is a coclique in P (p2). Further, the set of characteristic vectors of cocliques

Ta = {S(a, b) | b ∈ E}, a ∈ N ∗/E∗

spans the direct sum of the θ-eigenspace and 1. Again we define χa,bi to be the charac-
teristic vector of S(a, bi) and let

χa,i = χa,bi − χa,bi+1

for any a in N ∗. Consequently, we have the following.
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Lemma 5.8. Let p be a prime power with p2 ≡ 1 (mod 4). Then the {−1, 0, 1}-vectors 
χa,i for a ∈ N ∗ form a quasi-orthogonal basis of the −p+1

2 -eigenspace of P (p2).

Putting Lemma 5.7 and 5.8 together we obtain the following fact.

Theorem 5.9. Let p be a prime power with p2 ≡ 1 (mod 4). The Paley graph P (p2) is 
WHD.

5.2. Kneser graphs

In this section, we consider the Kneser graph K(n, 2) with n ≥ 5. This graph is 
strongly regular, and its spectrum is

σ(K(n, 2)) =
{(

n− 2
2

)(1)

,−(n− 3)(n−1), 1
(
(n2)−n

)}
.

This graph is also isomorphic to the complement of the line graph of a complete graph
Let χi be the vector in R(n2) indexed by the 2-subsets of {1, 2, . . . , n}, with the entry 

corresponding to the set A equal to 1 if i ∈ A and 0 otherwise. So χi is the characteristic 
vector for the vertices in K(n, 2) (so the 2-sets from {1, . . . , n}) that contain i.

The negative eigenvalue of K(n, 2) is τ = −(n − 3). The following follows from The-
orem 5.1 and the well-known EKR theorem for intersecting sets.

Proposition 5.10. The τ -eigenspace is spanned by the vectors {χi− 2
n1} for i = 1, . . . , n.

Note that each χi − 2
n1 has only two possible entries, namely − 2

n or n−2
n .

Lemma 5.11. The vectors {χi − 2
n1} for i = 1, . . . , n are the only τ -eigenvectors for 

K(n, 2) that have exactly two different entries (up to scalar multiplication).

Proof. Let v be a τ -eigenvector with entries from the set {x, y}. Then, by Proposi-
tion 5.10, v is in the span of {χi − 2

n1 | i = 1, . . . , n}. That is,

v =
n∑

i=1
ai(χi −

2
n
1).

This implies that the linear combination w =
∑n

i=1 aiχi is a vector with exactly two 
distinct entries.

It is easy to see that for the row corresponding to a 2-subset {i, j}, there are exactly 
two vectors, namely χi and χj , with the entry in the row equal to 1; the {i, j}-entry in 
all of the other vectors is equal to 0.

Assume there are three distinct coefficients in the equation w =
∑n

i=1 aiχi. So without 

loss of generality, assume that a1, a2 and a3 are all distinct. Then the {1, 2}, {2, 3} and 
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{1, 3} entries of w will be, respectively, a1 +a2, a2 +a3, a1 +a3. Since these values are all 
distinct, w will have at least three distinct entries. So the linear combination can have 
at most two distinct coefficients.

Next assume that a1 = a2 = a and a3 = a4 = b, where a �= b, then w will have the 
three distinct numbers a + b, 2a, 2b in its {1, 3}, {1, 2}, {3, 4} entries. So one of the two 
distinct coefficients in the linear combination can occur only once.

Thus the linear combination must have all but one coefficient equal. Finally, since v
is a τ -eigenvector, it is also orthogonal to the all ones vector, these two facts together 
imply that v must be a scalar multiple of a χi − 2

n1. �
Corollary 5.12. The τ -eigenspace of K(n, 2) does not have an orthogonal basis of vectors 
whose entries take only two values.

Proof. By the previous result, any τ -eigenvector that takes only two values must be a 
scalar multiple of some χi − 2

n . But for distinct i, j ∈ [n − 1]

(
χi −

2
n
1
)t(

χj −
2
n
1
)

= 1 − 2(n− 1)
n

< 0. �
The above argument shows that K(n, 2) is not a Hadamard diagonalizable graph for 

any n. However, we do not know whether it is a weakly Hadamard diagonalizable graph 
or not. We can prove that there is a quasi-orthogonal basis of τ -eigenvectors with entries 
from {0, −1, 1}.

Proposition 5.13. The vectors {χi − χi+1|1 ≤ i ≤ n − 1} form a quasi-orthogonal basis 
for the τ -eigenspace of K(n, 2).

Proof. It follows from Theorem 5.2 that χi − χi+1 are τ -eigenvectors.
Let M be the (n − 1) × (n − 1) matrix with the vectors χi − χi+1 as the columns. 

Then M tM is a tridiagonal matrix with main diagonal entries all equal to 2n − 4, and 
all of the off-diagonal entries are equal to −(n − 2).

The eigenvalues of M tM are

(2n− 4) − 2(n− 2) cos
(
kπ

n

)
, k = 1, 2, . . . , n− 1

so it has full rank and is a basis for the τ -eigenspace. �
We end this section with this question: Are the graphs K(n, 2) WHD? To solve this 

we would need to find a quasi-orthogonal basis for the θ-eigenspace. For n = 5, 6, we 
provide a positive resolution to this question.
Lemma 5.14. The graphs K(5, 2) and K(6, 2) are both WHD.
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Proof. The rows of the matrix below form a quasi-orthogonal basis for K(5, 2) (the first 
vector is for the eigenvalue 3, the next four are −2-eigenvectors and the final five are 
1-eigenvectors)

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1
0 1 1 1 −1 −1 −1 0 0 0
1 −1 0 0 0 1 1 −1 −1 0
0 1 −1 0 1 −1 0 0 1 −1
0 0 1 −1 0 1 −1 1 −1 0
0 1 0 −1 0 0 0 −1 0 1
0 1 0 −1 −1 0 1 0 0 0
1 −1 1 −1 0 −1 0 0 1 0
1 0 −1 0 −1 1 −1 0 1 0
1 0 −1 0 0 −1 0 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rows of the matrix P ′ below form a quasi-orthogonal basis for K(6, 2) (the first 
vector is for the eigenvalue 6, the next five are −3-eigenvectors and the final nine are 
1-eigenvectors.)

P ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 1 1 1 −1 −1 −1 0 0 0
0 1 −1 0 0 1 −1 0 0 0 1 1 −1 −1 0
0 0 1 −1 0 0 1 −1 0 1 −1 0 0 1 −1
0 0 0 1 −1 0 0 1 −1 0 1 −1 1 −1 0
0 0 1 −1 0 0 −1 1 0 −1 1 0 0 1 −1
0 0 0 1 −1 0 0 −1 1 0 −1 1 1 −1 0
0 1 −1 −1 1 −1 1 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 −1 1 0 1 −1 −1 1 0
0 0 1 −1 0 0 −1 1 0 1 −1 0 0 −1 1
1 −1 −1 0 1 0 0 −1 0 0 1 0 1 0 −1
0 0 0 1 −1 0 0 1 −1 0 −1 1 −1 1 0
0 0 1 −1 0 0 1 −1 0 −1 1 0 0 −1 1
0 1 −1 0 0 1 −1 0 0 0 −1 −1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. �

5.3. Orthogonal array graphs

An m ×n2 array with entries from {1, 2, . . . , n} is called an orthogonal array, denoted 
by OA(m, n), if the columns of any 2 × n2 subarray consist of all n2 ordered pairs 
of elements from {1, 2, . . . , n}. In particular, for any two rows each ordered pair from 
{1, 2, . . . , n} occurs in exactly one column. The block graph for an orthogonal array
OA(m, n) is a strongly-regular graph defined from an orthogonal array. The columns of 
the array are the vertices of the graph, and two vertices are adjacent if there is a row in 
which the two columns have the same entry. This graph is denoted by XOA(m,n).

It is well-known that for any orthogonal array OA(m, n) we have m ≤ n + 1 (see for 

example [8, Section III.3]). Further, if m = n +1, then XOA(n+1,n) is the complete graph 
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on n2 vertices. The eigenvalues of XOA(m,n) for any OA(m, n) are well-known (see, for 
example, [10, Section 5.5]).

Theorem 5.15. If OA(m, n) is an orthogonal array where m < n +1, then its block graph 
XOA(m,n) is strongly regular, with spectrum (for the adjacency matrix)

{
m(n− 1)(1), (n−m)(m(n−1)), −m((n−1)(n+1−m))

}
.

We can apply Theorem 5.2 to XOA(m,n) to deduce

ω(XOA(m,n)) ≤ 1 − m(n− 1)
−m

= n.

The set of columns of OA(m, n) that have the same entry in the same row form a clique 
in XOA(m,n) that meets this bound. For i ∈ {1, . . . , n} let Sr,i denote the set of columns 
of OA(m, n) that have the entry i in row r. Further, define vr,i to be the characteristic 
vector for Sr,i.

Theorem 5.16. Let OA(m, n) be an orthogonal array with m < n + 1. The set of vectors

{vr,i − vr,i+1 | r ∈ {1, . . . ,m}, i ∈ {1, . . . , n− 1}}

is a quasi-orthogonal basis for the (n −m)-eigenspace of XOA(m,n).

Proof. From Theorem 5.2 vr,i − 1
n1 is a (n − m)-eigenvector, so vr,i − vr,i+1 is also a 

(n −m)-eigenvector for r ∈ {1, . . . , m} and i ∈ {1, . . . , n − 1}.
Define Hr to be the (n −1) ×(n −1) matrix with columns vr,i−vr,i+1 for i = 1, . . . , n −1. 

Then Ht
rHr is tridiagonal with all entries equal to 2n on the main diagonal and all 

entries equal to −n on the super- and sub-diagonal. Then Ht
rHr has full rank since the 

eigenvalues are

2n− 2n cos
(
kπ

n

)
, k = 1, 2, . . . , n− 1.

Define H = [H1|H2| . . . |Hm]. Since for any r �= s, and any i, j ∈ {1, . . . , n} we have 
(vr,i−vr,i+1) · (vs,j −vs,j+1) = 0, it follows that HtH =

⊕m
r=1 H

t
rHr. Thus HtH has full 

rank (equal to m(n −1)) and these vectors span the (n −m)-eigenspace of XOA(m,n). �
It is unclear at this time if there exists a quasi-orthogonal basis for the (−m)-

eigenspace. Consequently, we pose the following question.

Question 5.1. Is there a quasi-orthogonal basis for the −m-eigenspace, or more specifi-

cally, is the graph XOA(m,n) WHD?
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MacNeish’s construction (see [13,15] or more recently [10, Section 5.5]) can be used 
to build an OA(m, n2) from an OA(m, n). If the columns of the OA(m, n) are denoted 
by ci, then the columns of the OA(m, n2) are given by ci + ncj for i, j ∈ {1, . . . , n2}.

For example, the following OA(3, 2)

OA1 =
[0 0 1 1

0 1 0 1
0 1 1 0

]

can be used to construct this OA(3, 4)

OA2 =
[0011 0011 2233 2233

0101 2323 0101 2323
0110 2332 2332 0110

]
.

Denote the columns of an OA(m, n) by ci, c2, . . . , cn2 . For each row in the orthogonal 
array, define an n2 × n2 matrix Mi with i ∈ {1, . . . , m}; we call these the row matrices 
of OA(m, n). The rows and columns of Mi are indexed by the columns in OA(m, n)
and the (ci, cj)-entry of Mi is 1 if ci and cj agree in row i, and zero otherwise. Then 
XOA(m,n) =

∑m
i=1(Mi − I).

Lemma 5.17. Let OA(m, n) be an orthogonal array with row matrices Mi. If OA(m, n2)
is the orthogonal array formed from McNeish’s construction with OA(m, n), then the 
row matrices of OA(m, n2) are Mi ⊗Mi.

Proof. Let ci be the columns of the OA(m, n). Then the columns of OA(m, n2) are 
ci +ncj . So columns ci +ncj and ck +nc� intersect in row r if and only if both ci and ck, 
and cj and c� intersect in row r. So the rth row matrix for OA(m, n2) is Mr ⊗Mr. �

Starting with the orthogonal array OA1 defined above, recursively define OAk to be 
the OA(m, 22k) formed by MacNeish’s construction on OAk−1.

Lemma 5.18. For all k, the graph XOAk
is Hadamard diagonalizable.

Proof. The row matrices for OA1 are Hadamard diagonalizable by the Sylvester 
Hadamard matrix H4. So the row matrices of OAk are Hadamard diagonalizable by the 
Sylvester Hadamard matrix H22k . Thus the matrix XOAk

is Hadamard diagonalizable 
by H22k . �

This result also follows from the fact that the graph XOAk
is cubelike (this means 

that it is a Cayley graph for the group Zd
2) and in [5] it is noted that any cubelike graph 

is diagonalized by the Sylvester Hadamard matrix.

We can also find a large family of block graphs of orthogonal arrays that are WHD.
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Theorem 5.19. Let O = OA(m, n) be an orthogonal array that can be extended to an 
orthogonal array with n + 1 rows. Then XOA(m,n) is WHD.

Proof. Let O′ be the orthogonal array with n + 1 rows that is an extension of O. For 
each row that is in O′, but not in O, define n vectors v1, v2, . . . , vn each of length n2. 
The ith entry of vi is equal to 1 if the ith entry of the row is equal to i and 0 otherwise. 
Then the vectors vi − vi+1 are (−m)-eigenvectors with entries from {0, −1, 1}. To see 
this, let r be a row in O′ that is not in O. Consider the set of columns in O, in which row 
r contains element i. No two of these columns can have the same entry in the same row; 
if they did, then there will be a repeated pair of elements in this row and r in O′. This 
means that vi is the characteristic vector of a clique in XO. It follows from Theorem 5.2
that vi − vi+1 is an (−m)-eigenvector.

Since this is done for each row of O′ that is not in O, we produce (n + 1 −m)(n − 1)
vectors. Since these vectors come from rows of an orthogonal array they have the quasi-
orthogonal property. �

An orthogonal array with n + 1 rows is the largest possible orthogonal array and its 
block graph is a complete graph, which is WHD. At the opposite end of the spectrum 
is an orthogonal array with only two rows. In this case, XOA(2,n) = Kn � Kn, but it is 
still open if this graph is WHD for all n.

If an n × n Hadamard matrix exists, then Kn � Kn is Hadamard diagonalizable, and 
hence WHD. Further, K3 � K3 is WHD. This is graph number 3 on nine vertices in the 
Appendix. We conjecture that all of these graphs are WHD.

Conjecture 5.1. For all positive integers n the graph Kn � Kn is WHD.

So the next question is when is the orthogonal array graph associated with an or-
thogonal array with only three rows is WHD? Such an orthogonal array is equivalent to 
a Latin square. Observe that each column of such an array has three letters, and each 
column describes an entry in a Latin square; the first two letters give the row and the 
column and the third letter is the entry is the given row and column.

Question 5.2. When is a Latin square graph WHD?

5.4. Block graph for a 2-(n, m, 1) design

Assume that (V, B) is a 2-(n, m, 1) design that is not symmetric. The block graph of the 
2-(n, m, 1) design (V, B) is the graph with the blocks of the design as the vertices in which 
two blocks are adjacent if and only if they intersect. It is well-known that this graph is 
a strongly-regular graph (see, for example, [4,14,16] or more recently [10, Section 5.3]).

Theorem 5.20. The block graph of a 2-(n, m, 1) design (that is not symmetric) is strongly 

regular with spectrum (for the adjacency matrix)
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{
m(n−m)
m− 1

(1)
,
n−m2

m− 1

(n−1)

,−m

(
n(n−1)
m(m−1)−n

)}
.

By Theorem 5.2,

ω(X(V,B)) ≤ 1 − k

τ
= 1 −

m(n−m)
(m−1)

−m
= n− 1

m− 1 .

This number is r, the replication number for the design, this is the number of blocks that 
contain a given i ∈ {1, . . . , n}. For any i ∈ {1, . . . , n} let Si be the collection of all blocks 
in the design that contain i, which forms a clique of size r. The cliques Si are called the 
canonical cliques of the block graph. Let vi be the characteristic vectors of the canonical 
clique Si.

Lemma 5.21. Let (V, B) be any 2-(n, m, 1) design. Then the set {vi−vi+1 | i ∈ {1, . . . , n}}
is a quasi-orthogonal basis for the (n−m2

m−1 )-eigenspace of block graph of (V, B).

Proof. It follows from Theorem 5.2 that the vectors vi − vi+1 are (n−m2

m−1 )-eigenvectors.
Let H be the matrix whose columns are vi − vi+1. Then HtH is tridiagonal, with all 

entries equal to 2r− 2 on the main diagonal and all entries equal to r− 1 on the super-
and sub-diagonal. As in the previous examples, this matrix has full rank (specifically, 
the rank is n − 1). �

It is still open if the τ -eigenspace has a quasi-orthogonal basis with all entries in 
{0, 1, −1}.

Question 5.3. Is there a quasi-orthogonal basis for the (−m)-eigenspace with entries from 
{0, −1, 1}?

6. Further work

This is a first paper considering WHD graphs, so there are still many open ques-
tions. We conclude with two families of graphs which we believe would be interesting to 
determine if they have the property of being WHD or not.

For n ≥ 1 the unitary Cayley graph Un is the Cayley graph of the group Zn with 
connection set the set of all elements that are invertible under multiplication. Unitary 
Cayley graphs are integral graphs; that is, their eigenvalues are integers.

Question 6.1. For which n is Un WHD?

Cographs are formed by taking isolated vertices with operations joins and unions. It 
is known that there is a basis for the Laplacian matrix of a cograph that contains vectors 

that each only have two entries.
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Question 6.2. Which cographs are WHD?
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Appendix A. WHD graphs on at most nine vertices

In this Appendix we list all the connected graphs on at most nine vertices that are 
WHD. Beginning with graphs on 3 vertices, each row of each table consists of a graph 
along with its corresponding Laplacian spectrum. Further, for each eigenvalue a corre-
sponding quasi-orthogonal basis is exhibited for that eigenspace.

1
0: [ 1, 1, 1 ]
3: [ 1, -1, 0 ], [ 0, 1, -1 ]

1

4: [ 1, 1, -1, -1 ]
0: [ 1, 1, 1, 1 ]
2: [ 1, -1, 0, 0 ], [ 0, 0, 1, -1 ]

2

2: [ 1, -1, 0, 0 ]
0: [ 1, 1, 1, 1 ]
4: [ 1, 1, -1, -1 ], [ 0, 0, 1, -1 ]

3
0: [ 1, 1, 1, 1 ]
4: [ 1, 0, 0, -1 ], [ 0, 1, 0, -1 ], [ 0, 0, 1, -1 ]

1

3: [ 1, -1, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1 ]
5: [ 1, 1, 0, -1, -1 ], [ 0, 0, 1, 0, -1 ], [ 0, 0, 0, 1, -1 ]

2
0: [ 1, 1, 1, 1, 1 ]
5: [ 1, -1, 0, 0, 0 ], [ 0, 1, -1, 0, 0 ], [ 0, 0, 1, -1, 0 ], [ 0, 0, 0, 1, -1 ]
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1

4: [ 1, 1, 1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1 ]
3: [ 1, 0, -1, -1, 0, 1 ], [ 0, 1, -1, -1, 1, 0 ]
1: [ 1, 0, -1, 1, 0, -1 ], [ 0, 1, -1, 1, -1, 0 ]

2

6: [ 1, 1, 1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1 ]
3: [ 1, -1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 1, -1, 0 ],

[ 0, 0, 0, 0, 1, -1 ]

3

0: [ 1, 1, 1, 1, 1, 1 ]
3: [ 1, 0, -1, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0 ]
6: [ 1, 1, 1, -1, -1, -1 ], [ 0, 0, 0, 1, 0, -1 ], [ 0, 0, 0, 0, 1, -1 ]

4

2: [ 1, -1, 1, -1, 1, -1 ]
0: [ 1, 1, 1, 1, 1, 1 ]
5: [ 1, 0, -1, -1, 0, 1 ], [ 0, 1, 1, 0, -1, -1 ]
3: [ 1, 0, -1, 1, 0, -1 ], [ 0, 1, -1, 0, 1, -1 ]

5

0: [ 1, 1, 1, 1, 1, 1 ]
6: [ 1, 1, 0, 0, -1, -1 ], [ 0, 0, 1, 1, -1, -1 ]
4: [ 1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 1, -1 ]

6

0: [ 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0 ]
6: [ 1, 1, 0, 0, -1, -1 ], [ 0, 0, 1, 1, -1, -1 ], [ 0, 0, 0, 0, 1, -1 ]

7

4: [ 1, -1, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1 ]
6: [ 1, 1, -1, -1, 0, 0 ], [ 0, 0, 1, 1, -1, -1 ], [ 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 1, -1 ]

8

0: [ 1, 1, 1, 1, 1, 1 ]
6: [ 1, -1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 1, -1 ]

1

5: [ 0, 0, 0, 1, -1, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, 0, -1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0 ]
7: [ 0, 0, 0, 1, 1, -1, -1 ], [ 1, 1, 1, -1, -1, 0, -1 ], [ 0, 0, 0, 0, 0, 1, -1 ]

2

0: [ 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, 0, -1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0 ]
7: [ 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 1, -1 ],

[ 1, 1, 1, -1, -1, -1, 0 ]

3

0: [ 1, 1, 1, 1, 1, 1, 1 ]
5: [ 1, -1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0 ]
7: [ -1, -1, 1, 1, 0, 0, 0 ], [ 1, 1, 0, 0, -1, 0, -1 ], [ 0, 0, 0, 0, 1, 0, -1 ],

[ 0, 0, 0, 0, 0, 1, -1 ]
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5: [ 1, -1, 0, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1 ]
7: [ 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 1, -1 ], [ 0, 0, 1, 1, -1, -1, 0 ],

[ 1, 1, -1, -1, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0 ]

5

0: [ 1, 1, 1, 1, 1, 1, 1 ]
7: [ 1, -1, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0 ],

[ 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 1, -1 ]

1

6: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, 0, 0, -1, -1, 0, 0, 1 ], [ 0, 1, 0, -1, -1, 0, 1, 0 ],

[ 0, 0, 1, -1, -1, 1, 0, 0 ]
2: [ 1, 0, 0, -1, 1, 0, 0, -1 ], [ 0, 1, 0, -1, 1, 0, -1, 0 ],

[ 0, 0, 1, -1, 1, -1, 0, 0 ]

2

8: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

3

8: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
6: [ 0, 0, 0, 0, 1, 0, 0, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, -1, 1 ],
[ 0, 0, 0, 0, 0, 1, -1, 0 ]

4

8: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 0, 0, 0, 0, 1, 0, -1, 0 ], [ 0, 0, 0, 0, 0, 1, 0, -1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 1, -1 ]

5

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1 ]
6: [ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ]

6

6: [ 0, 0, 0, 0, 1, -1, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1 ],

[ 0, 0, 0, 0, 0, 0, 1, -1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ]
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0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

8

8: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, 0, 0, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0, -1 ]
4: [ 1, -1, -1, 1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, -1, 1 ], [ 0, 0, 0, 0, 0, 1, -1, 0 ]

9

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1 ]
4: [ 1, -1, -1, 1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ]
6: [ 1, 0, 0, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 1, -1 ]

10

6: [ 1, 0, 0, -1, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, -1, 1, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

11

8: [ 1, 1, 1, -1, -1, -1, -1, 1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, 0, 0, 0, 0, 0, 0, -1 ], [ 0, 0, 0, 1, 0, -1, 0, 0 ],

[ 0, 0, 0, 0, 1, 0, -1, 0 ]
4: [ 1, -1, -1, 0, 0, 0, 0, 1 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 1, -1, 1, -1, 0 ]

12

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0 ]
5: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ]
8: [ 0, 0, 0, 1, 1, -1, -1, 0 ], [ 1, 1, 1, -1, -1, 0, 0, -1 ],

[ -1, -1, -1, 1, 1, 1, 1, -1 ]

13

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
5: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ]
8: [ 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ],
[ 1, 1, 1, -1, -1, -1, -1, 1 ]

14

2: [ 1, -1, 1, -1, 1, -1, 1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, 0, 0, 1, 0, -1, -1, 0 ], [ 0, 0, 1, 1, 0, 0, -1, -1 ],

[ 0, 1, 1, 0, -1, 0, 0, -1 ]
4: [ 1, 0, 0, -1, 0, 1, -1, 0 ], [ 0, 0, 1, -1, 0, 0, -1, 1 ],

[ 0, 1, -1, 0, 1, 0, 0, -1 ]
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8: [ 1, 1, 1, 1, -1, -1, -1, -1 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
4: [ 1, -1, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 1, -1 ]
6: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, 0, -1, 0 ],[ 0, 0, 0, 0, 0, 1, 0, -1 ]

16

4: [ 1, -1, 1, -1, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1 ]
6: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

17

4: [ 1, -1, 1, -1, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1 ],

[ 0, 0, 0, 0, 0, 0, 1, -1 ]
6: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, 0, 0 ]

18

4: [ 1, -1, 1, -1, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0 ]
8: [ 1, 1, 1, 1, -1, -1, -1, -1 ], [ 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

19

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, 0, 0 ]
8: [ 1, 1, -1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, -1, -1, 0, 0 ],

[ 0, 0, 0, 0, 1, 1, -1, -1 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

20

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0, 0 ]
8: [ 1, 1, -1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 1, -1, -1, -1 ],

[ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, -1 ]

21

6: [ 0, 0, 0, 1, -1, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
5: [ 1, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ]
8: [ 0, 0, 0, 0, 0, 0, 1, -1 ], [ 0, 0, 0, 0, 0, 1, -1, 0 ],

[ 1, 1, 1, -1, -1, 1, -1, -1 ], [ 1, 1, 1, 0, 0, -1, -1, -1 ]

22

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, 0, 0, 0, 0, -1, -1 ], [ 1, 1, 0, 0, -1, -1, 0, 0 ],

[ 1, 1, -1, -1, -1, -1, 1, 1 ]
6: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]
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6: [ 1, -1, 0, 0, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, 1, -1, -1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, -1, -1, 0, 0 ],

[ 0, 0, 0, 0, 1, 1, -1, -1 ], [ 0, 0, 1, -1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1 ]

24

0: [ 1, 1, 1, 1, 1, 1, 1, 1 ]
8: [ 1, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 1, -1, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, -1 ]

1

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
5: [ 1, 0, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0, 0 ]
9: [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1, 0 ]

2

7: [ 1, 0, 0, -1, 0, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
5: [ 1, -1, -1, 1, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0, 0 ]
9: [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1, 0 ]

3

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
6: [ 0, 0, 0, 1, 1, 1, -1, -1, -1 ], [ 0, 0, 1, 0, -1, -1, 0, 0, 1 ],

[ 0, 1, -1, -1, 1, 0, 0, 1, -1 ], [ 1, -1, 0, 0, -1, 1, 1, -1, 0 ]
3: [ 0, 1, -1, 0, -1, 1, -1, 0, 1 ], [ 0, 0, 0, 0, 1, -1, 1, -1, 0 ],

[ 0, 0, 0, 1, -1, 0, 0, 1, -1 ], [ 1, -1, 0, -1, 1, 0, -1, 0, 1 ]

4

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
9: [ 1, 1, 1, 0, 0, 0, -1, -1, -1 ], [ 0, 0, 0, 1, 1, 1, -1, -1, -1 ]
6: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ]

5

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
9: [ 1, 1, 1, 0, 0, 0, -1, -1, -1 ], [ 0, 0, 0, 1, 1, 1, -1, -1, -1 ],

[ 0, 0, 0, 0, 0, 0, 1, 0, -1 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ]
6: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 1, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ]

6

5: [ 1, -1, 1, -1, 0, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
7: [ 1, 0, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, -1, 0, 0, 0, 0, 0 ]
9: [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1, 0 ]
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0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
7: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, -1, 0, 0, 0 ]
9: [ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ],

[ 0, 0, 0, 0, 1, 1, -1, -1, 0 ], [ 0, 0, 1, 1, -1, -1, 0, 0, 0 ],
[ 1, 1, -1, -1, 0, 0, 0, 0, 0 ]

8

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
7: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, -1, 0, 0, 0, 0, 0 ]
9: [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, -1, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 1, -1 ], [ 0, 0, 0, 0, 1, 1, -1, -1, 0 ],
[ 0, 0, 1, 1, -1, -1, 0, 0, 0 ], [ 1, 1, -1, -1, 0, 0, 0, 0, 0 ]

9

7: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ]
0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
9: [ 0, 0, 1, -1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, -1, 0, 0, 0 ],

[ 1, 1, -1, -1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 1, -1, -1, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 1, -1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ],
[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ]

10

0: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
9: [ 1, -1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, -1, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, -1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, -1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, -1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, -1 ]
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