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A subset F of a finite transitive group G ≤ Sym(Ω) is inter-
secting if any two elements of F agree on an element of Ω. 
The intersection density of G is the number

ρ(G) = max {|F|/|Gω| | F ⊂ G is intersecting} ,

where ω ∈ Ω and Gω is the stabilizer of ω in G. It is known 
that if G ≤ Sym(Ω) is an imprimitive group of degree a prod-
uct of two odd primes p > q admitting a block of size p or 
two complete block systems, whose blocks are of size q, then 
ρ(G) = 1.
In this paper, we analyze the intersection density of imprim-
itive groups of degree pq with a unique block system with 
blocks of size q based on the kernel of the induced action on 
blocks. For those whose kernels are non-trivial, it is proved 
that the intersection density is larger than 1 whenever there 
exists a cyclic code C with parameters [p, k]q such that any 
codeword of C has weight at most p − 1, and under some ad-
ditional conditions on the cyclic code, it is a proper rational 
number. For those that are quasiprimitive, we reduce the cases 
to almost simple groups containing Alt(5) or a projective spe-
cial linear group. We give some examples where the latter has 
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intersection density equal to 1, under some restrictions on p
and q.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

All groups considered in this paper are finite. Given a finite set Ω, we let Sym(Ω) be the 
symmetric group of Ω. A set F ⊂ Sym(Ω) is intersecting if for any g, h ∈ F , there exists 
ω ∈ Ω such that ωg = ωh. We are interested in studying the largest intersecting sets in 
finite permutation groups. Problems of this nature have been studied since the late 70s 
with the paper of Deza and Frankl [5] on the size and the possible structures of the largest 
intersecting sets in the symmetric group Sym(n) with its natural action on {1, 2, . . . , n}. 
Deza and Frankl proved that if F ⊂ Sym(n) is intersecting, then |F| ≤ (n − 1)!. Later, 
Cameron and Ku [4], independently, Larose and Malvenuto [16], proved that equality 
holds if and only if F is a coset of a stabilizer of a point of Sym(n). Consequently, the 
maximum intersecting sets in Sym(n) are cosets of a stabilizer of a point.

A natural question is then whether similar results to the one on the symmetric group 
hold for general transitive permutation groups. Unfortunately, the answer to this question 
is negative. To see this, consider the alternating group G = Alt(4) acting on left cosets 
of H = 〈(1 2)〉 by left multiplication. This action is transitive and its point stabilizers 
have size 2, however, the Klein group K = 〈(1 2), (3 4)〉 is an intersecting set of size 4.

In [17], a measure for intersecting sets in transitive groups was introduced. Formally, 
the intersection density of a transitive group G ≤ Sym(Ω) is the rational number

ρ(G) := max {ρ(F) | F ⊂ G is intersecting} ,

with ρ(F) := |F|/|Gω| for any intersecting set F , where Gω is the point stabilizer of 
ω ∈ Ω in G. The study of the intersection density parameter in transitive groups has 
recently drawn the attention of many researchers [1,12–14,22,23,25,26,24,28,30]. One 
of the major results about the intersection density of a group was proved in [25]. It 
was proved that the largest possible value of the intersection density of a group acting 
transitively on Ω, with |Ω| ≥ 3, is |Ω|

3 and this upper bound is sharp since it is attained 
by the groups given in [25, Theorem 5.1].

The study of the intersection density of the transitive group G ≤ Sym(Ω), as we will 
see later in Section 2, is equivalent to the study of the cocliques of a certain Cayley 
graph ΓG called the derangement graph of G. The clique-coclique [8] bound states that1
α(ΓG)ω(ΓG) ≤ |G|. The knowledge of cocliques in ΓG can therefore be used to give an 
upper bound on certain complex structures on G arising from coding theory, provided 

1 α(ΓG) and ω(ΓG) denote respectively the maximum size of cocliques and cliques in ΓG.

http://creativecommons.org/licenses/by/4.0/
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that G is highly transitive. First recall that F ⊂ G is called k-intersecting if there exist 
distinct ω1, ω2, . . . , ωk ∈ Ω such that ωg

i = ωh
i for any g, h ∈ F and 1 ≤ i ≤ k. Let Ω(k)

be the set of all k-tuples of Ω with pairwise distinct entries. It is not hard to see that a k-
intersecting set of G ≤ Sym(Ω) is exactly an intersecting set of G ≤ Sym(Ω(k)), provided 
that G is also k-transitive, that is, it is transitive on Ω(k). For any two permutations 
g, h ∈ G, define d(g, h) = |Ω| −

∣∣{ω ∈ Ω : ωg = ωh
}∣∣ to be the distance between g and 

h. A PC(G, k) permutation code of a transitive group G ≤ Sym(Ω) is a subset S ⊂ G

such that d(g, h) ≥ k, for any two elements g, h ∈ G. A PC(G, k) permutation code is 
in fact a clique in the derangement graph of G ≤ Sym

(
Ω(|Ω|−k+1)). If Γ(|Ω|−k+1)

G is the 
derangement graph of G ≤ Sym

(
Ω(|Ω|−k+1)), then by using the clique-coclique bound 

on Γ(|Ω|−k+1)
G , we obtain a general upper bound on the maximum size of a PC(G, k)

permutation code. This yields an upper bound which is not tight in general [2,7] and the 
classification of multiply transitive groups forces k to be large, unless G is equal to the 
full symmetric group Sym(Ω) or the alternating group Alt(Ω). A more general approach 
to permutation codes arising from permutation groups is given in [3].

The overwhelming majority of the works on the intersection density of transitive 
groups focus on trying to classify the transitive groups whose intersection densities are 
equal to 1 or whose largest intersecting sets are cosets of a point stabilizer. For instance, 
Meagher, Spiga and Tiep [26] proved that any finite 2-transitive group has intersection 
density 1. In [17,25], works on transitive groups that have large intersection densities 
were initiated.

Another interesting problem is to study the intersection density of groups with fixed 
degrees. It was conjectured in [25, Conjecture 6.6] that if G is a transitive group of degree 
a product of two distinct primes q < p, then ρ(G) = 1 if p and q are odd, and ρ(G) ≤ 2
if q = 2. The latter was proved in [28]. In [14], Hujdurović et al. proved further that the 
intersection density of such groups is either 1 or 2; if it is equal to 2, then the group 
is a split extension of an elementary abelian 2-group. In [12], Hujdurović et al. gave an 
elegant construction of transitive groups disproving the conjecture when p and q are both 
odd. They provided a family of imprimitive groups of degree pq (q < p are odd primes) 
whose intersection densities are equal to q.

Although [25, Conjecture 6.6 (3)] is false, it is natural to ask about the possible values 
of the intersection density of transitive groups of degree a product of two distinct odd 
primes p > q. When G is primitive of degree pq, the third author proved in [29] that 
ρ(G) = 1 for several families. It is in fact conjectured in [29, Conjecture 9.1] that all 
primitive groups of degree a product of two odd primes have intersection densities equal 
to 1. Imprimitive groups of degree pq that admit a block system with blocks of size p have 
intersection density equal to 1 (see [12]). It was also proved in [29] that any imprimitive 
group of degree a product of two odd primes with at least two (imprimitivity) block 
systems has intersection density equal to 1. The objective of this paper is to study the 
intersection density of the remaining families of imprimitive groups of degree a product 
of two primes p and q (where p > q), i.e., those with a unique block system of size q. To 
this end, for any n ≥ 2, we define the set
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In := {ρ(G) | G is transitive of degree n}.

The set In, for n ≥ 2, was first introduced in [25]. For any prime p, we have Ip = {1}
since any transitive group of prime degree contains a regular subgroup, which implies 
that its intersection density is equal to 1 (see Lemma 2.1). For any odd prime p, it follows 
from [14] that I2p = {1, 2}. When p and q are two distinct odd primes (q < p), it is 
known that any transitive group G ≤ Sym(Ω) of degree pq admits a semiregular element 
of order p [19]. Using this fact, one can prove that ρ(G) ≤ q, for any transitive group of 
degree pq (see Lemma 2.1). This upper bound is sharp since the transitive groups given 
in [12] attain it. Apart from these few results, very little is known about the set Ipq.

Henceforth, we will assume that p > q are odd primes and G ≤ Sym(Ω) is imprimitive 
of degree pq admitting a unique block system B with blocks of size q. Let G ≤ Sym(B) be 
the induced action of G on B and denote the kernel of the canonical epimorphism G → G

by Ker(G → G). If G is quasiprimitive, i.e., all its non-trivial normal subgroups are 
transitive, then Ker(G → G) is trivial since it is intransitive. Conversely, if Ker(G → G)
is trivial, then a non-trivial normal subgroup of G is transitive, otherwise its orbits 
would form a block system of G (see Lemma 2.2) and, by uniqueness of B, this normal 
subgroup would be trivial. Hence, G is quasiprimitive if and only if Ker(G → G) is 
trivial. Consequently, we shall distinguish the two cases whether Ker(G → G) is trivial 
or not.

The first part of this paper focuses on the case where the kernel of the induced action is 
trivial (i.e., the quasiprimitive cases). We first reduce the quasiprimitive cases to groups 
containing one of two almost simple groups. Since this reduction is an easy exercise that 
follows from the classification of the transitive groups of prime degree, due to Burnside 
in 1900, we only state it as a remark.

Remark 1.1. If G ≤ Sym(Ω) is an imprimitive quasiprimitive of degree a product of two 
odd primes p > q, then G is an almost simple group with socle equal to

(i) Alt(5) admitting a transitive action of degree 3 × 5,
(ii) PSL2(11) admitting a transitive action of degree 5 × 11, or
(iii) PSLd(rd

m) admitting a transitive action of degree pq, for some d ≥ 2, m ≥ 0, and 

a prime number r such that p = rd
m+1−1
rdm−1 .

A discussion regarding this result is given in Section 3 for sake of completeness. The 
groups in (i) and (ii) in Remark 1.1 have intersection densities equal to 1 via Sagemath
[31]. Hence, the remaining minimal cases for the quasiprimitive case are the imprimitive 
actions of PSLd(rd

m), of degree a product of two odd primes. These groups are extremely 
difficult to deal with and we believe that new techniques are required to determine their 
intersection density in general. We present a case where the intersection density of such 
groups can be computed using the known techniques in the literature. This result is a 
particular case of Remark 1.1(iii) where m = 0 and d = r, and in this case, there is a 
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unique imprimitive permutation representation of degree pq of PSLr(r), where p = rr−1
r−1

and q = r.

Theorem 1.2. For any odd prime q, if p = qq−1
q−1 is a prime, then the intersection density 

of the imprimitive representation of PSLq(q) of degree pq is 1.

Based on computational results, we make the following conjecture.

Conjecture 1.3. If G is a quasiprimitive group of degree pq, then ρ(G) = 1.

The remaining results of the paper are about the non-quasiprimitive cases, i.e., when 
Ker(G → G) is non-trivial. Our next result is stated as follows.

Theorem 1.4. Let G ≤ Sym(Ω) be a transitive group of degree pq admitting a unique 
block system B whose blocks are of size q. Suppose that H = Ker(G → G) is non-trivial. 
Let N be a minimal normal subgroup of G contained in H.

(i) If N is non-abelian, then ρ(G) = 1.
(ii) If N is abelian and H admits a derangement, then ρ(G) = 1.

The counterexamples to [25, Conjecture 6.6 (3)] given in [14] are based on the existence 
of certain cyclic codes (see §4.2 for the basic definitions). In this paper, we also prove a 
certain converse to their construction.

Theorem 1.5. Let G be a group as in Theorem 1.4. Moreover, assume that G is minimally 
transitive with intersection density ρ(G) = q. Then, there is a [p, k]q cyclic code C such 
that the Hamming weight w(c) is at most p − 1 for all c ∈ C.

These two results imply that if Ker(G → G) is non-trivial and ρ(G) > 1, then G is an 
extension of a certain derangement-free elementary abelian q-group. We conjecture the 
following based on computational results via Sagemath [31].

Conjecture 1.6. Assume that Ker(G → G) is non-trivial. If G is 2-transitive, then ρ(G) =
1. If G = Cp � Ck < AGL1(p), then ρ(G) ∈ {1} ∪

{
q
d : d | k and d ≤ q

}
.

This conjecture is hard as far as we know. With additional restrictions on the odd 
primes p and q, we prove that Ipq contains a proper rational number.

Theorem 1.7. If q and p = qk−1
q−1 are odd primes such that k < q, then qk ∈ Ipq.

This paper is organized as follows. In Section 2, we provide the necessary background 
to prove the main results. The proof of Theorem 1.2 and a discussion about Remark 1.1
are given in Section 3. In Section 4, we prove Theorem 1.4 and Theorem 1.5. We give 
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the proof of Theorem 1.7 in Section 5, and in Section 6, we give a conjecture (see 
Conjecture 6.1) that encompasses all the possibilities for the set Ipq, for any values of p
and q.

2. Background results

In this section, we review some basics on transitive groups (§2.1 and §2.2) and codes 
(§2.3), that are needed in this work.

2.1. Transitive groups

Throughout this section, we let G ≤ Sym(Ω) be a finite transitive group.

2.1.1. Intersection density
The standard technique to study the intersection density of a transitive group is to 

transform the problem into a graph theoretical one. Recall that if K is a group and 
S ⊂ K \ {1} is a subset such that x ∈ S implies x−1 ∈ S, then the Cayley graph 
Cay(K, S) is the graph whose vertex set is K and x, y ∈ K are adjacent if yx−1 ∈ S. 
It is well known that Cay(K, S) is connected if and only if 〈S〉 = K. Furthermore, the 
number of components of Cay(K, S) is equal to [K : 〈S〉]. Given a permutation group 
K, the derangement graph of K, denoted by ΓK , is the graph Cay(K, Der(K)), where 
Der(K) = {k ∈ K | k is a derangement}. If Der(K) = ∅, then ΓK is the empty graph, 
i.e., without edges. If K is transitive of degree at least 2, then Der(K) 
= ∅ by [15], and 
so ΓK has at least one edge.

Recall that an independent set or a coclique in a graph is a subgraph in which no 
two vertices are adjacent. The size of the largest cocliques in a graph X is called the 
independence number and is denoted by α(X). It is not hard to see that given a transitive 
group G ≤ Sym(Ω), a subset F ⊂ G is intersecting if and only if F is a coclique in ΓG. 
Consequently, we have ρ(G) = α(ΓG)/|Gω|, for ω ∈ Ω.

We recall the following bound on the intersection density of a transitive group.

Lemma 2.1. [29, Corollary 4.2] Let H ≤ Sym(Ω) be a transitive group and K be a 
subgroup of H with k orbits of the same size. Then, we have ρ(H) ≤ ρ(K)k.

2.1.2. Imprimitive groups
In this part, we further assume that G ≤ Sym(Ω) is imprimitive. Recall that S ⊂ Ω

is a block (of imprimitivity) of G if Sg ∩ S = ∅ or Sg = S, for all g ∈ G. It is clear 
that {ω} for ω ∈ Ω and the set Ω are always blocks of the group G; we call such blocks 
trivial. If G admits a block S such that 1 < |S| < |Ω|, then we say that the group G is 
imprimitive. In this case, we know the collection of subsets given by B = {Sg | g ∈ G}
forms a partition of Ω, that is invariant by the action of G. Such a G-invariant partition 
of Ω is called a (complete) block system. We recall the following result.
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Lemma 2.2 (Theorem 1.6A [6]). If N � G, then the orbits of N form a G-invariant 
partition of Ω. That is, {ωN | ω ∈ Ω} is a G-invariant partition of Ω.

Note that in Lemma 2.2 if N = 1 or N is transitive, then the corresponding block 
systems are {{ω} | ω ∈ Ω} or {Ω}, respectively. That is, they consist of trivial blocks.

Recall that a subgroup K ≤ G is semiregular if its stabilizers are trivial. Moreover, 
an element g ∈ G is called semiregular if 〈g〉 ≤ G is semiregular. Therefore, it is clear 
that any derangement g ∈ G of prime order is semiregular. Next, we recall the following 
lemma (see [14, Lemma 3.1]).

Lemma 2.3. Let G be a transitive group admitting a semiregular subgroup K whose orbits 
form a G-invariant partition B. Let G be the induced action of G on B. Then, we have 
ρ(G) ≤ ρ(G).

2.1.3. The subgroup generated by non-derangements
In this section, we briefly describe the structure of the subgroup generated by the 

non-derangements in a transitive group. We assume that G ≤ Sym(Ω) is a transitive 
group, where Ω is a finite set. Define

F(G) := 〈
⋃
ω∈Ω

Gω〉. (1)

In other words, F(G) is the subgroup generated by all permutations with at least one 
fixed point (i.e., the non-derangements). It is not hard to see that F(G) � G since the 
point stabilizers are conjugate. If F(G) = {1}, then each point stabilizer of G is trivial, 
thus G is regular. If F(G) 
= {1}, then its orbits form a block system (see Lemma 2.2).

If F(G) < G, then the complement of the derangement graph ΓG is ΓG = Cay(G, G \
(Der(G) ∪ {1})). As 〈G \ (Der(G) ∪ {1})〉 = F(G) is a proper subgroup of G, we can 
see that ΓG is disconnected. The number of components of ΓG is equal to [G : F(G)]
since ΓG is also a Cayley graph. Switching to the complement, we conclude that ΓG is 
a join (see [9, pg 21] or [32] for the definition) of [G : F(G)] copies of the complement 
of ΓG that contains 1, that is, the graph ΓF(G) = Cay(F(G), F(G) ∩ Der(G)). From this 
explanation, the following proposition follows.

Proposition 2.4. The graph ΓG is complete multipartite if and only if F(G) is intersecting.

If F(G) = G, then the graph ΓG is not a join anymore. We recall the following result, 
whose proof can be found in [25].

Proposition 2.5. [25, Lemma 2.3] A subgroup H ≤ G is intersecting if and only if it is 
derangement-free.
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2.2. The transitive groups of degree pq

In this section, we categorize the types of transitive groups of degree a product of 
two odd primes for a better analysis of their intersection density. Let G ≤ Sym(Ω) be a 
transitive group of degree a product of two odd primes p > q. Let m be the number of 
block systems of G. In [18], Lucchini proved that if m ≥ 2, then m = 2 or m = p + 1
and G has at most one block system with blocks of size p. It was proved in [12] that if 
G admits a block of size p, then ρ(G) = 1. If m ≥ 2, then it was also shown in [29] that 
ρ(G) = 1. Therefore, we only need to consider the cases where G admits only trivial 
blocks or a unique block system where the blocks are of size q. Consequently, G is one 
of the following types.

(I) Quasiprimitive types: every non-trivial normal subgroup of G is transitive. These 
groups can be further subdivided into the following.

(a) Primitive types: G only admits trivial blocks. Some groups of this type have 
been proved to have intersection density 1 in [29].

(b) Quasiprimitive types admitting non-trivial blocks: G admits a block system 
whose blocks are of size q and whose kernel of the induced action on blocks is 
trivial.

(II) Genuinely imprimitive types: G admits a block system with blocks of size q whose 
kernel of the induced action on the blocks is non-trivial.

2.3. Cyclic codes

Let n ≥ 1 be a positive integer and q be a prime number. The Hamming weight
of c ∈ Fn

q , denoted by w(c), is the number of non-zero entries of c. We also define 
Z(c) = n − w(c). The standard non-degenerate symmetric bilinear form 〈·, ·〉 on Fn

q is 
given by:

〈c,d〉 = c1d1 + · · · + cndn,

for all c = (c1, . . . , cn), d = (d1, . . . , dn) ∈ Fn
q . The symmetric group on {0, . . . , n − 1}, 

which is denoted by Sn, acts on Fn
q as follows:

cγ = (c0γ , . . . , c(n−1)γ ),

for c = (c0, . . . , cn−1) ∈ Fn
q and γ ∈ Sn.

Now let C be an [n, k]q linear code C over Fq, that is, a k-dimensional Fq-subspace of 
Fn
q . The dual C⊥ of C with respect to 〈·, ·〉 is called the dual code of C. For any γ ∈ Sn, 

we let Cγ := {cγ | c ∈ C}. The permutation automorphism group of C is
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Table 1
The remaining simply primitive groups of degree pq.

Soc(G) (p, q) action Information

PΩε
2d(2)

(
2d − ε, 2d−1 + ε

) singular

1-spaces

ε = 1 and d is a Fermat prime

ε = −1 and d − 1 is a Mersenne prime
PSL2(p)

(
p, p+1

2
)

cosets of Dp−1 p ≥ 13 and p ≡ 1(mod 4)
PSL2(q2)

(
q2+1

2 , q
)

cosets of PGL2(q)
PSL2(61) (61, 31) cosets of Alt(5)

PAut(C) = {γ ∈ Sn | Cγ = C}.

Clearly, PAut(C) = PAut(C⊥).
From now on, we assume that C is cyclic, that is, the cyclic shift σ = (0, 1, . . . , n −1)−1

is in PAut(C), or equivalently,

(c0, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C.

In this case, it is well known that C admits a so-called parity-check polynomial h(t) =∑k
i=0 ait

i ∈ Fq[t], which is a divisor of tn − 1. The polynomial g(t) = tn−1
h(t) is called the 

generator polynomial of C. Moreover, we have the following description:

C =
{
(c0, c1, . . . , cn−1) ∈ Fn

q | a0ci+k + a1ci−1+k + . . . + akci = 0,

for i ∈ {0, 1, . . . , n− k − 1}
}
.

Given c ∈ C, the minimal polynomial f =
∑�−1

i=0 bit
i + t� ∈ Fq[t] of c is the monic 

irreducible polynomial with least degree that is annihilated by c, that is,

b0ci+� + b1ci−1+� + . . . + b�−1ci+1 + ci = 0,

for all i ∈ {0, 1, . . . , p − � − 1}. Note that such a polynomial always exists and divides 
h(t) since h(t) is annihilated by c (see [27]).

3. Quasiprimitive types

In this section, we assume that G is a quasiprimitive group. Clearly, its socle Soc(G)
(i.e., the subgroup generated by all minimal normal subgroups) is transitive. One can 
then reduce the study of the intersection density of G by considering its socle, since the 
latter is transitive. The socles of primitive groups of degree pq were classified by Marušič 
and Scapellato in [21]. In [29], it was proved that the socles of primitive groups have 
intersection density 1, except possibly for the ones given in Table 1.

It is in fact conjectured that the groups in Table 1 all have intersection density equal 
to 1.
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Table 2
Socles of transitive groups of prime degree p.

Line Soc(G) Comments
1 Cp p is prime
2 Alt(p) p is prime
3 PSL2(11) degree 11 (equivalently, acting on cosets of Alt(5))
4 M11 of degree 11
5 M23 of degree 23
6 PSLd(rd

m

) d ≥ 2 and p = rdm+1−1
rdm−1 where r is a prime

3.1. A discussion regarding Remark 1.1

Assume that G is a quasiprimitive group which admits a unique block system B with 
blocks of size q. Recall that Ker(G → G) is trivial. Consequently, the group G acts 
transitively and faithfully on B. Further, if ω ∈ Ω and B ∈ B contains ω, then Gω is a 
subgroup of GB = G{B} of index q, where G{B} is the setwise stabilizer of B in G. In 
other words,

[G : G{B}] = p and [GB : Gω] = q. (2)

A consequence of the Classification of Finite Simple Groups is that all transitive 
groups of prime degree can be classified in terms of their socles. Since G is isomorphic 
to G which is transitive of degree p, the socle of G is one of the groups in Table 2.

We now give an analysis of the intersection density of the groups in Table 2.

• The group Cp in line 1 cannot be transitive of degree pq. Hence, it cannot be 
quasiprimitive.

• For the group PSL2(11) in line 3, the only possibilities for q are 3, 5, and 7. The 
point stabilizer Alt(5) of PSL2(11) does not have any subgroup of index in {3, 7}. 
The alternating group Alt(4) has index 5 in Alt(5). This gives rise to a transitive 
action of PSL2(11) of degree 55, whose intersection density is 1.

• Similarly, the Mathieu group M11 in line 4 cannot have a quasiprimitive action of 
degree q × 11, for any q ∈ {3, 5, 7} since the point stabilizer of M11 in its natural 
action does not admit a subgroup satisfying (2).

• The Mathieu group M23 in line 5 admits two transitive actions of degree 11 × 23, 
both of which are primitive. There are no other quasiprimitive actions of degree a 
product of two odd primes.

The remaining groups in Table 2 are considered separately.

Lemma 3.1. For any n ≥ 5 and for any odd prime q < n, the group Alt(n) does not 
admit a transitive action of degree n × q, unless (n, q) = (5, 3).
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Proof. The point stabilizer of Alt(n) in its natural action on {1, 2 . . . , n} is Alt(n − 1). 
If K ≤ Alt(n − 1) such that [Alt(n − 1) : K] = q is an odd prime, then Alt(n − 1) acts 
transitively on Alt(n − 1)/K by left multiplication. If n ≥ 6, then the group Alt(n − 1)
is simple, so the kernel of this action of Alt(n − 1) is trivial. Consequently, Alt(n − 1)
embeds into Sym(Alt(n − 1)/K) and so (n−1)!

2 ≤ q!, which is impossible. If n = 5, the 
kernel of Alt(n − 1) = Alt(4) contains the Klein group C2 × C2 which is of index 3 in 
Alt(4). Hence, Alt(5) admits a transitive action of degree 15. �

A direct consequence of the above lemma is that the group Alt(p) in line 2 of Table 2
admits a transitive action of degree p × q only when (p, q) = (5, 3). This action is 
quasiprimitive and its intersection density can be easily verified to be equal to 1 via
Sagemath.

Therefore, an imprimitive quasiprimitive group of degree pq is an almost simple group 
containing Alt(5) (transitive of degree 15), PSL2(11) (transitive of degree 55) or the 
groups in line 6 of Table 2.

3.2. Proof of Theorem 1.2

Before proving the main result, let us first determine the point stabilizer of PSLk(�) in 
its natural action of degree p. Let p be an odd prime such that p = �k−1

�−1 where � = rk
m , 

for some prime number r. Let q be an odd prime less than p and assume that PSLk(�)
admits an imprimitive action of degree pq, where the projective space PGk−1(�) of the 
vector space Fk

� is a complete block system. In order for p = �k−1
�−1 to be a prime, k must 

be a prime number and gcd(k, � − 1) = 1. The latter implies that PSLk(�) = SLk(�). A 
matrix in SLk(�) that fixes the 1-dimensional subspace 〈e1〉, where e1 ∈ Fk

� is the vector 
whose first entry is 1 and 0 elsewhere, is of the form

[
det(B)−1 a1 a2 . . . ak−1

0 B

]
(3)

where B ∈ GLk−1(�) and [a1 a2 . . . ak−1]T ∈ Fk−1
� . If SLk(�) admits a quasiprimitive 

action of degree pq for some odd q < p, then by (2) the subgroup consisting of all elements 
of the form (3) admits a subgroup of index q.

For the remainder of this section, we consider the groups in line 6 of Table 2 for m = 0
and r = k = q. Recall that a Singer subgroup of PSLn(s), for any prime power s, is a 
cyclic subgroup of order s

n−1
s−1 gcd(n, s −1). Let T be a Singer subgroup of PSLk(�). Since 

gcd(k, � − 1) = 1, a Singer subgroup of PSLk(�) = SLk(�) is a regular subgroup of order 
p. Let ϕ ∈ Aut(F�k/F�) be the Frobenius automorphism of the field F�k . As detailed 
in [10, pg. 497], an element of 〈ϕ〉 can be viewed as an invertible matrix over F�k and 
the latter induces a collineation of PGk−1(�). Let 〈ψ〉 be the group determined by these 
collineations. By [10], the normalizer of T in PSLk(�) is given by
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T � 〈ψ〉 ∼= Cp � Ck. (4)

Moreover, T � 〈ψ〉 is a Frobenius group by [10, Theorem 2.10]. By [20, Lemma 2.6] and 
the fact that k = q, the subgroup T � 〈ψ〉 ∼= Cp � Cq is a regular subgroup of PSLk(�). 
By Lemma 2.1, we conclude that ρ(PSLq(�)) = 1.

4. Proofs of Theorem 1.4 and Theorem 1.5

4.1. Proof of Theorem 1.4

Throughout this section, we assume that G ≤ Sym(Ω) is transitive of degree pq, 
where p > q are two odd primes. In addition, we suppose that B = {B1, B2, . . . , Bp} is 
the unique block system of G and H = Ker(G → G) is non-trivial. Let N be a minimal 
normal subgroup of G contained in H.

Theorem 4.1. If N is non-abelian, then ρ(G) = 1.

Proof. Since N 
= 1 and q is prime, N is transitive on each block in B. By [6, Theorem 
4.3.A (3)], N is a direct product of isomorphic non-abelian simple groups, that is, we 
can write

N = S1 × S2 × . . .× Sk, (k ≥ 1), (5)

and there exists a simple group S such that Si
∼= S for all i ∈ {1, 2, . . . , k}.

We identify H (and thus N) as a subgroup of Sym(q)p. For 1 ≤ j ≤ p, let Nj be the 
restriction of N to the j-th block Bj and denote by πj : N � Nj ≤ Sym(q) the canonical 
restriction. Recall that, by a result due to Burnside, the subgroup Nj is a simple group 
for any j ∈ {1, 2, . . . , p}. If K is any subgroup of N , we define

Supp(K) = {j ∈ {1, . . . , p} | πj |K 
= 1}.

Moreover, if K is a simple normal subgroup of N , then πj |K : K → Nj is an isomorphism 
for all j ∈ Supp(K). Let i ∈ {1, . . . , k}. Set

Ji = Supp(Si) = {j ∈ {1, . . . , p} | πj |Si
: Si → Nj is an isomorphism}.

Fact 1: We claim that Ji 
= ∅, for any i ∈ {1, 2, . . . , k}.
It is clear that there exists j ∈ {1, . . . , p} such that πj(Si) 
= 1. Since πj is surjective 

and Si � N , we have πj(Si) � Nj , and so πj(Si) = Nj , as Nj is simple. Now, since 
Ker(πj |Si

) is a proper normal subgroup of Si, we conclude that Ker(πj |Si
) = 1. Therefore 

j ∈ Ji.
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Fact 2: We claim that

k⋃
i=1

Ji = {1, . . . , p}, (6)

therefore, all Nj are non-abelian.
Let j ∈ {1, 2, . . . , p}. By definition, πj |N = πj 
= 1, so there exists i ∈ {1, 2, . . . , k}

such that πj |Si

= 1, or equivalently, j ∈ Ji. Therefore, we have {1, . . . , p} = Supp(N) ⊂⋃k

i=1 Ji. The other inclusion is obvious.
Fact 3: We claim that Ji ∩ Ji′ = ∅ when i 
= i′.

Suppose that Ji ∩ Ji′ 
= ∅, and pick j ∈ Ji ∩ Ji′ . Since Si and Si′ commute when 
viewed as subgroups of the direct product in (5), Nj = πj(Si) and Nj = πj(Si′) also 
commute, and so Nj is abelian, which is a contradiction. Hence,

Ji ∩ Ji′ = ∅ whenever i 
= i′. (7)

Fact 4: We claim that |Ji| does not depend on i.
Let i, i′ ∈ {1, . . . , k}. Since G is transitive and N is normal, there exists g ∈ G

such that Supp(gSig
−1) ∩ Supp(Si′) 
= ∅. Since gSig

−1 � N and Si′ � N , either 
gSig

−1∩Si′ = 1 or gSig
−1 = Si′ . In the first case, gSig

−1 and Si′ commute, which implies 
that, for j ∈ Supp(gSig

−1) ∩ Supp(Si′), Nj is abelian. Hence, we get a contradiction. 
Therefore, we must have gSig

−1 = Si′ . Since g permutes the blocks, the latter implies 
that

|Ji| = |Supp(Si)| = |Supp(gSig
−1)| = |Supp(Si′)| = |Ji′ |.

Consequently, there exists a positive integer m such that

|Ji| = m, for all i ∈ {0, 1, . . . , k}. (8)

Therefore, by (6), (7), and (8) we have km = p. As p is prime, we either have k = 1
or k = p.
Fact 5: N admits a derangement which is a product of p q-cycles.

Assume that k = 1. Notice that Supp(N) = {1, . . . , p}, and that, πj : N → Nj is 
an isomorphism, for all j ∈ {1, . . . , p}. Since q divides |N |, there exists a permutation 
σ = (σ1, σ2, . . . , σp) ∈ N \ {1} of order q (viewed as an element of Sym(q)p). Therefore, 
σj is a q-cycle or 1, for any j ∈ {1, 2, . . . , p}. However, for j ∈ {1, . . . , p}, the map πj is 
injective, so we have

1 = πj(1, . . . , 1) 
= πj(σ) = σj .

Hence, all σj are q-cycles, and so σ is a product of p q-cycles. In other words, σ is a 
semiregular element of N .
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Next, assume that k = p. Since m = 1, each Si is a subgroup of the i-th factor Sym(q). 
Therefore,

{S1, . . . , Sp} = {N1, . . . , Np}.

As each Ni is transitive on the block Bi, for any i ∈ {1, 2, . . . , p}, Ni admits an element 
of order q. From this we deduce that N = S1 × . . . × Sp admits an element which is a 
product of p q-cycles, i.e., a semiregular element.
Fact 6: The intersection density of G is equal to 1.

Since N admits a semiregular element of order q and N ≤ H, we conclude by 
Lemma 2.3 that ρ(G) ≤ ρ(G). Since G is transitive of prime degree, we have ρ(G) = 1, 
which implies ρ(G) = 1. �

This proves Theorem 1.4 (i). For the remainder of this section, we consider the case 
when N is an elementary abelian q-group. Before proving the next result, we recall the 
following lemma, whose proof is straightforward.

Lemma 4.2. Let σ = (0, . . . , q − 1). The normalizer of 〈σ〉 in Sym(q) is

NSym(q)(〈σ〉) =
{
τa,i =

(
0 1 . . . q − 1
a a + i . . . a + (q − 1)i

)
| 0 ≤ a ≤ q − 1, 1 ≤ i ≤ q − 1

}
.

Moreover, the derangements in NSym(q)(〈σ〉) are exactly σ, σ2, . . . , σq−1.

Theorem 4.3. Assume that N is an elementary abelian q-group and H contains a de-
rangement x, then ρ(G) = 1.

Proof. We claim that x is necessarily a product of p q-cycles. First, we identify H as a 
subgroup of Sym(q)p ≤ Sym(Ω). For 1 ≤ i ≤ p, let πi : Sym(q)p � Sym(q) be the i-th 
projection. Since 1 
= N � G and G acts transitively on Ω, we get πi(N) 
= 1 (1 ≤ i ≤ p) 
and πi(N) is an elementary abelian q-group of Sym(q). Such a subgroup of Sym(q) has 
to be cyclic. Therefore, there is a q-cycle �i (1 ≤ i ≤ p) such that πi(N) = 〈�i〉.

Write x = (x1, . . . , xp) ∈ Sym(q)p, where xi belongs to the i-th factor Sym(q). Now 
let 1 ≤ i ≤ p. Since N � H and x ∈ H, we get

〈�i〉 = πi(N) = πi(xNx−1) = πi(x)πi(N)(πi(x))−1 = xi〈�i〉x−1
i .

Therefore, xi ∈ NSym(q)(〈�i〉). Since xi is a derangement, xi is a q-cycle by Lemma 4.2. 
Consequently, x is a product of p q-cycles. It is not hard to see that x is a semiregular 
element such that the set of orbits of 〈x〉 coincide with B. Therefore, ρ(G) ≤ ρ(G) = 1
by Lemma 2.3. �
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4.2. Proof of Theorem 1.5

First, we recall the construction from [14]. Let C be a [p, k]q cyclic code satisfying

Z(c) > 0 for all c ∈ C. (9)

Consider Ω = Zq×Zp. Let α be the permutation of Ω given by α : (i, j) �→ (i, j+1), and 
for c = (c0, c1, . . . , cp−1) ∈ C, we let βc be the permutation of Zq × Zp such that βc :
(i, j) �→ (i + cj , j). Now, define S = {βc | c ∈ C}, H(C) := 〈S〉, and G(C) := 〈S ∪ {α}〉. 
It is clear that G(C) is transitive on Ω and H(C) � G(C). The orbits of H(C) are of 
the form Bj = Zq × {j}, for 0 ≤ j ≤ p − 1. We note that for any c, c′ ∈ C, we have

βcβc′ = βc+c′ . (10)

A straightforward computation, using (10), proves that

F(G(C)) = H(C).

Moreover, H(C) is derangement-free since Z(c) > 0, for all c ∈ C. Hence, ΓG(C) is a 
complete p-partite graph and therefore ρ(G(C)) = q. Consequently, we have the following 
result.

Theorem 4.4 ([14]). If C is a [p, k]q cyclic code such that Z(c) > 0, for all c ∈ C, then 
there exists an imprimitive group G(C) whose intersection density is equal to q.

Below, we give a proof of Theorem 1.5, which in a certain sense, gives a converse to 
Theorem 4.4.

Theorem 4.5. Let G ≤ Sym(Ω) be a degree pq (p > q odd primes) transitive group 
admitting a unique block system B whose blocks are of size q. Assume that the kernel 
H = Ker(G → G) is nontrivial and G is minimally transitive with intersection density 
ρ(G) = q. Then, there is a [p, k]q cyclic code C such that the Hamming weight w(c) is 
not equal to p, for all c ∈ C.

Proof. Since H = Ker(G → G) is nontrivial, there exists a minimal normal subgroup 
N of G contained in H. By Theorem 1.4, N is an elementary abelian q-group and H
is derangement-free. Now let g be a derangement of order p, which exists by [19]. Since 
〈N, g〉 is transitive and G is minimally transitive, we deduce that N = H. Now we 
are going to construct a [p, k]q (k = logq(|N |)) cyclic code C with the property that 
Z(c) > 0, for all c ∈ C.

Relabel the blocks of B by B0, . . . , Bp−1 in order to obtain g(Bj) = Bj+1, for 0 ≤
j ≤ p − 1 and g(Bp−1) = B0. Consequently, we may identify N with a subgroup 〈σ0〉 ×
· · · × 〈σp−1〉, for some q-cycles σj ∈ Sym(Bj). Moreover, we may assume that gσjg

−1 =
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σj+1 for 0 ≤ j ≤ p − 1. Now write B0 = {b0,0, . . . , bq−1,0} and suppose that σ0 =
(b0,0 . . . bq−1,0). For 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ p − 1, let bi,j = bg

j

i,0. In this case, 
we have Bj = {b0,j , . . . , bq−1,j}, for all 0 ≤ j ≤ p − 1. A direct computation shows 
that σj = (b0,j . . . bq−1,j), for all 0 ≤ j ≤ p − 1. Consider the group isomorphism 
Ψ : (a0, . . . , ap−1) ∈ Fp

q = Zp
q �→ (σa0

0 , . . . , σap−1
p−1 ) ∈ 〈σ0〉 × · · · × 〈σp−1〉. In this situation 

C = Ψ−1(N) is a [p, k]q-cyclic code, where k = logq(|N |).
The map ϕ : bi,j ∈ Ω �→ (i, j) ∈ Zq × Zp is a bijection. By identifying bi,j and (i, j), 

we deduce an action of C on Zq × Zp as follows:

(i, j)Ψ(c) := (i + cj , j), for c = (c0, c1, . . . , cp−1) ∈ C.

For c = (c0, c1, . . . , cp−1) ∈ C, the element Ψ(c) ∈ N admits a fixed point, so there 
exists (i, j) ∈ Zq ×Zp such that (i, j)Ψ(c) = (i, j). Hence, we have cj = 0. It follows that 
Z(c) > 0 for all c ∈ C. �
Remark 4.6. The minimal transitivity condition in Theorem 4.5 is not necessary. How-
ever, one can check that, this condition allows us to recover the structure of G from the 
constructed code C. Indeed, in this case, G is permutation equivalent to the group G(C).

5. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. Our proof relies on the existence of certain 
cyclic codes. Now, let p and q be two odd primes such that p = qk−1

q−1 for some prime k. 
Recall that k is the smallest positive integer such that qk = 1 (mod p). Recall also that 
Φp(t) is the product of φ(p)

k = p−1
k monic irreducible polynomials over Fq of degree k. 

Hence, the splitting field of Φp(t) is Fqk .
Let Z ⊂

{
x ∈ Fqk | xp = 1

}
. The cyclic code with defining zeroes Z is the cyclic code

Cq,k(Z) =
{

(c0, c1, . . . , cp−1) ∈ Fp
q |

p−1∑
i=0

cix
i = 0, for all x ∈ Z

}
.

Since gcd(p, q) = 1, the map ϕ : {0, 1, . . . , p − 1} → {0, 1, . . . , p − 1} given by:

iϕ = qi (mod p)

belongs to Sp. Let c = (c0, c1, . . . , cp−1) ∈ Cq,k(Z) and x ∈ Z. If we denote c(x) =
c0 + c1x + . . . + cp−1x

p−1, we have

cϕ(x) = c(xqk−1
) = c(x)q

k−1
= 0.

This is equivalent to saying that cϕ ∈ Cq,k(Z). In other words, ϕ ∈ PAut(Cq,k(Z)). 
The permutation automorphism ϕ is called the Frobenius automorphism of Cq,k(Z). 
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Moreover, since k is the smallest positive integer such that qk = 1 (mod p), the order 
of ϕ is k. See [11] for details.

5.1. An extension from the Frobenius permutation automorphism

Let ζ be any root of Φp(t) with minimal polynomial g(t) ∈ Fq[t]. The generator 
polynomial of Cq,k({ζ}) is clearly g(t), and so Cq,k({ζ}) is a [p, p −k]q cyclic code. Now, let 
C = Cq,k({ζ})⊥ be the dual code of Cq,k({ζ}). Observe that PAut(C) = PAut(Cq,k({ζ}))
and C is a [p, k]q cyclic code.

Next, we consider the group K = 〈σ, ϕ〉 ≤ PAut(C), where σ is the cyclic shift 
and ϕ is the Frobenius automorphism. By noting that jϕ−1σϕ = j + q (mod p) for 
any j ∈ {0, . . . , p − 1}, we conclude that ϕ−1σϕ = σq. In other words, ϕ normalizes 
σ. Moreover, since p and q are distinct primes, we have 〈σ〉 ∩ 〈ϕ〉 = {id}. Therefore, 
K = 〈σ〉 � 〈ϕ〉 ∼= Cp � Ck.

Let α and βc for c ∈ C be the permutations of Ωp,q = Zq×Zp defined in the paragraph 
before Theorem 4.4. Recall that H(C) is the subgroup generated by {βc | c ∈ C} and 
G(C) = H(C) �〈α〉. In addition, we define the permutation ψ of Ωp,q by (i, j)ψ = (i, jϕ), 
where ϕ is the Frobenius automorphism of C. For any (i, j) ∈ Ωp,q and c ∈ C, we have⎧⎨⎩(i, j)ψ−1αψ = (i, j)αq

(i, j)ψ−1βcψ =
(
i + vjϕ−1 , j

)
= (i, j)βc

ϕ−1 .

As ϕ ∈ PAut(C), we conclude that ψ normalizes G(C). In particular, if we let M(C) :=
〈G(C), ψ〉, noting that G(C) ∩ 〈ψ〉 = {id}, we have M(C) = H � (〈α〉� 〈ψ〉) ∼= Fk

q �

(Cp � Ck). We note that ψ fixes any (i, 0) for i ∈ Zq, so ψ fixes the block Zq × {0}
pointwise.

5.2. The derangement graph of M(C)

In this section, we will study the derangement graph of M(C) defined in the previous 
section. The group M := M(C) = H � (〈α〉� 〈ψ〉) acts imprimitively on Ωp,q with 
block system B = {Zq × {j} | j ∈ {0, 1, . . . , p− 1}}. For any j ∈ {0, 1, . . . , p − 1}, we let 
Bj := Zq × {j}. We also prove the following theorem.

Theorem 5.1. The intersection density of M(C) is equal to max(1, qk ).

We begin with the following easy lemma.

Lemma 5.2. If t ∈ {1, . . . , k − 1}, then qt − 1 is invertible modulo p.

Proof. This follows from the fact that k is the smallest positive integer such that p |
qk − 1. �
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Lemma 5.3. For s ∈ {0, . . . , p − 1} and t ∈ {0, . . . , k − 1} such that αsψt 
= 1, we have

αsψt fixes a block ⇔ αsψt fixes a unique block ⇔ t 
= 0. (11)

Moreover, if αsψt fixes B ∈ B, then αsψt fixes B pointwise.

Proof. For j ∈ {0, . . . , p − 1} we have Bαsψt

j = Bqt(j+s). If t = 0, then the element 
αsψt = αs fixes no block, since s 
= 0. Now assume t 
= 0. By Lemma 5.2, qt − 1
is invertible modulo p. Hence, αsψt fixes a block Bj if and only if qt(j + s) = j, or 
equivalently, j ≡ (qt − 1)−1 (mod p). Therefore, we get (11). The last statement is 
straightforward. �
5.2.1. Structure of ΓM

In this section, we determine the structure of the derangement graph of M using the 
lexicographic product. Given two graphs X = (V (X), E(X)) and Y = (V (Y ), E(Y )), 
the lexicographic product X[Y ] is the graph whose vertex set is V (X) × V (Y ) and two 
vertices (x, y) and (u, v) are adjacent in X[Y ] if x ∼X u or x = u and y ∼Y v.

Recall that ψ fixes the elements of the block Zq × {0} pointwise. Since M = H �

(〈α〉� 〈ψ〉), an element of M is of the form hαsψt, for some h ∈ H, s ∈ {0, 1, . . . , p − 1}
and t ∈ {0, 1, . . . , k − 1}.

Let us find the structure of the derangement graph of M . The point stabilizer H(i,j), 
for (i, j) ∈ Ωp,q, is crucial to the structure of this graph. We note that H acts transitively 
on each element of B. Therefore, [H : H(i,j)] = q.

Now, we decompose the derangement graph of M into cosets of the subgroup H. The 
cosets M/H partition M . Therefore, the derangement graph ΓM can also be partitioned 
into [M : H] parts where each part is a coclique of size |H| (H is intersecting). We shall 
describe the edges of ΓM by describing the edges between H and another coset of H in 
M .

We define H(t) := {Hαsψt | 0 ≤ s ≤ p− 1}, for 0 ≤ t ≤ k − 1. We note that any 
coset of H in M is in 

⋃k−1
t=0 H(t) and the latter is a pairwise disjoint union.

Assume that Hy ∈ H(t) and Hz ∈ H(t′) for t, t′ ∈ {0, 1, . . . , k − 1}. By definition, for 
h1, h2 ∈ H we have

h1y ∼ h2z ⇔ h1 ∼ h2zy
−1.

Consequently, we may only consider the adjacency between H and Hzy−1. Assume that 
Hzy−1 ∈ H(t) for some t ∈ {0, 1, . . . , k−1}. That is, there exists s ∈ {0, 1, . . . , p −1} such 
that Hzy−1 = Hαsψt. Let ΓM [αsψt] be the subgraph of ΓM induced by H ∪Hαsψt.

• If t = 0, then Bαsψt 
= B for any B ∈ B (see (11)), unless s = 0. If s 
= 0 and t = 0, 
then for any (i, j) ∈ Ωp,q, we have

(i, j)nα
s 
= (i, j)n

′
,
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for any n, n′ ∈ H. Therefore, all the possible edges between H and Hαs occur and 
so

ΓM [αs] = K|H|,|H| for any s ∈ {1, 2, . . . , p− 1}, (12)

where K|H|,|H| is the complete bipartite graph with parts of equal size |H|.
• By (11), if t 
= 0, then there exists a unique B ∈ B such that Bαsψt = B, and 

moreover, αsψt fixes B pointwise. Assume without loss of generality that this block 
B is B� = Zq × {�}, for some � ∈ Zp. Let βc ∈ H, where c = (c0, c1, . . . , cp−1) ∈ C

and c� 
= 0 (i.e., 〈βc〉 is transitive on B). The subgroup 〈βc〉 = {id, βc, β2
c , . . . , β

q−1
c }

is a right transversal of H(0,�) in H, that is, 
∣∣〈βc〉 ∩H(0,�)y

∣∣ = 1 for any y ∈ H. Now 
we will see that we can precisely determine the edges of ΓM [αsψt].
The subgroup H is partitioned by the cosets 

(
H(0,�)β

l
c
)
l=0,1,...,q−1. Now, we determine 

the edges between H(0,�)β
l
c and H(0,�)β

l′
c α

sψt, for l, l′ ∈ {0, 1, . . . , q−1}. Assume that 
(i′, j′) ∈ B′ = B�′ , where �′ 
= �. Since αsψt only fixes B and H(0,�)β

l
c ⊂ H which is 

the kernel of the action on B, we know that for any l, l′ ∈ {0, 1, . . . , q − 1}

(i′, j′)H(0,�)β
l′
c
αsψt

∩B′ = ∅ and (i′, j′)H(0,�)β
l
c ⊂ B′.

In other words, no elements of H(0,�)β
l
c can intersect an element of H(0,�)β

l′
c α

sψt

outside of B. Let us examine the possible elements of B on which two permutations 
from the two cosets can intersect. Since H(0,�) fixes B pointwise, if l = l′ and (i, �) =
(0, �)βl

c , then for any z, z′ ∈ H(0,�) = H(i,�) we have

(0, �)z
′βl′

c
αsψt

=
(
(0, �)z

′βl′
c

)αsψt

= (0, �)z
′βl′

c = (0, �)β
l′
c = (0, �)β

l
c = (i, �)

(0, �)zβ
l
c = (0, �)β

l
c = (i, �).

In other words, any permutation in H(0,�)β
l′
c α

sψt intersects any permutation in 
H(0,�)β

l
c.

If l 
= l′, then βl
cβ

−l′
c does not have a fixed point in B since 〈βc〉 is a right transversal 

of H(0,�) in H. For any z, z′ ∈ H(0,�), we have

(i, �)zβ
l
c = (i, �)β

l
c

(i, �)z
′βl′

c
αsψt

= (i, �)z
′βl′

c = (i, �)β
l′
c 
= (i, �)β

l
c .

Consequently, no permutation in H(i,j)β
l
c can intersect any permutation of

H(i,j)β
l′
c α

sψt, for l 
= l′. In summary, for any t 
= 0 the graph induced by

{
H(0,�)β

l
c ∪H(0,�)β

l′
c α

sψt is a coclique if l = l′

H βl ∪H βl′αsψt is complete bipartite if l 
= l′.
(13)
(0,�) c (0,�) c
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Let K2
q be the complete bipartite graph Kq,q. In addition, let K̃2

q be the graph obtained 
from K2

q by removing q vertex-disjoint edges, i.e., a perfect matching. Combining (12)
and (13), we conclude that

ΓM [αsψt] =
{
K2

q [ΓH(0,�) ] if t = 0
K̃2

q [ΓH(0,�) ] otherwise.

From this, the adjacency in ΓM between Hαsψt and Hαs′ψt′ is completely determined 
by the values of t − t′. If t = t′, then the subgraph induced by Hαsψt ∪Hαs′ψt′ , where 
s 
= s′, in ΓM is isomorphic to ΓM [αs−s′ ] and therefore it is isomorphic to K2

q [ΓH(0,�) ]. 
If t 
= t′, then the subgraph induced by Hαsψt ∪ Hαs′ψt′ in ΓM is isomorphic to 
ΓM [αs−qt

′−ts′ψt′−t], and so it is isomorphic to K̃2
q [ΓH(0,�) ].

5.2.2. Proof of Theorem 5.1
Let F be a coclique of ΓM . Without loss of generality, we may assume that id ∈ F

since we can always multiply F by the inverse of one of its elements and obtain another 
intersecting set.

First assume that F is not contained in H. For any t ∈ {0, 1, . . . , k − 1}, we define 

Ft = F ∩
(⋃p−1

s=0 Hαsψt
)
.

Claim 1: For any t ∈ {1, . . . , k − 1}, we have |Ft| ≤ |H|
q .

Indeed, from the structure of ΓM , Ft is contained in Hαsψt for some s ∈ {0, . . . , p −1}. 
Now let g = βcα

sψt ∈ Ft. Since g 
∼ΓM
id, there exists (i, j) ∈ Ωp,q such that (i, j) =

(i, j)g, that is, (i, j) = (i + cj , qt(j + s)). From Lemma 5.2, j = −(qt − 1)−1s and cj = 0. 
Therefore, there are at most |H|

q possible choices for c, and so |Ft| ≤ |H|
q .

Claim 2: We have |F0| ≤ |H|
q .

Indeed, F0 is contained in Hαs for some s ∈ {0, . . . , p − 1}. The identity element 
id is non-adjacent to every element of Ft and no element in Hαs has a fixed point for 
s ∈ {1, . . . , p − 1}, hence s = 0 and F0 ⊂ H. Consider u ∈ F \ H 
= ∅ and write 
u−1 = βc′αs′ψt′ . Now let h = βc ∈ F0. Since h 
∼ u, there exists (i, j) ∈ Ωp,q such that 
(i, j) = (i, j)hu−1 = (i, j)βc+c

′αs′ψt′ . Note that t′ 
= 0 since βc+c′αs′ fixes no point when 
s′ 
= 0. The same argument as in Claim 1 proves that there are at most |H|

q choices for 
c + c′ and thus for c. Therefore, |F0| ≤ |H|

q .
We conclude that

|F| =
k−1∑
t=0

|Ft| ≤
k|H|
q

.

Moreover, this bound is sharp since it is attained by the coclique 
⋃k−1

t=0 H(1,0)ψ
t. Hence, 

we have
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ρ(F) ≤
k|H|
q

|M |
pq

= 1.

Finally, assume that F is contained in H. Then, it is clear that |F| ≤ |H| and so

ρ(F) ≤ |H|
|M |
pq

= |H|pq
|H|pk = q

k
.

The latter is clearly attained by H. Consequently, we have ρ(M) = max(1, qk ). Moreover, 
a maximum coclique of ΓM is either a coset of H or is of the form

k−1⋃
t=0

H(0,0)β
lt
c α

stψt,

for the sequences (lt)t=0,1,...,k−1 ⊂ {0, 1, . . . , q−1} and (st)t=0,1,...,k−1 ⊂ {0, 1, . . . , p −1}.
This completes the proof of Theorem 5.1.

5.3. Proof of Theorem 1.7

The group M(C) acts imprimitively on Ωp,q with block system B = {Zq × {j} | j ∈
{0, 1, . . . , p − 1}}. By Theorem 5.1, ρ(M(C)) = max(1, qk ). In particular, if p = qk−1

q−1
such that k < q, then ρ(M(C)) = q

k is a rational number.

6. Future work

In this paper, we studied the intersection density of imprimitive groups of degree a 
product of two odd primes p > q. For transitive groups of degree pq admitting a unique 
block system with blocks of size q, as well as non-trivial normal subgroups, we proved 
Theorem 1.4 and Theorem 1.7. In addition, we proved that if G ≤ Sym(Ω) is imprimitive 
and quasiprimitive of degree pq, then G is an almost simple group containing Alt(5) or a 
projective special linear group. The former has intersection density 1 and we conjectured 
in Conjecture 1.3 that the latter also has intersection density 1. If Conjecture 1.3 is true, 
then we will obtain that Ipq = {1} if and only if there exists no [p, k]q cyclic code C such 
that Z(c) > 0, for any c ∈ C. It is likely that Conjecture 1.3 is too hard for the proof 
techniques that are available in the literature.

Combining [29, Conjecture 9.1], Conjecture 1.6, and Conjecture 1.3, we make the 
following conjecture.

Conjecture 6.1. For any two odd primes p > q, we have

(i) Ipq = {1} if and only if there exists no [p, k]q cyclic codes C such that Z(c) > 0, 
for any c ∈ C.
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(ii) If C is a [p, k]q cyclic code such that Z(c) > 0, for c ∈ C, and σ ∈ PAut(C) is the 
cyclic shift automorphism, then

Ipq =
{

q
k | NPAut(C)(〈σ〉) admits an element of order k < q

}
∪ {1}.
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