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a b s t r a c t

A set F ⊂ Sym(V ) is intersecting if any two of its elements agree
on some element of V . Given a finite transitive permutation
group G ≤ Sym(V ), the intersection density ρ(G) is the maximum
ratio |F ||V |

|G|
where F runs through all intersecting sets of G. The

intersection density ρ(X) of a vertex-transitive graph X = (V , E)
is equal to max {ρ(G) : G ≤ Aut(X),G transitive}. In this paper,
we study the intersection density of the Kneser graph K (n, 3),
for n ≥ 7. The intersection density of K (n, 3) is determined
whenever its automorphism group contains PSL2(q), with some
exceptional cases depending on the congruence of q. We also
briefly consider the intersection density of K (n, 2) for values of
n where PSL2(q) is a subgroup of its automorphism group.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There have been many recent papers looking at the size of the largest set of intersecting
ermutations in a transitive permutation group, see for example [5,11–13,16,18,19,21,23,24]. In
hese works, two permutations g, h ∈ G ≤ Sym(V ) are said to be intersecting if g(v) = h(v) for
ome element v ∈ V , and the main problem is to determine the largest set of permutations in
hich any two are intersecting. If the subgroup H ≤ G is the stabilizer of a point under the action
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of G on V , then this action is equivalent to G acting on the cosets of H . Clearly with this action,
he subgroup H is an intersecting set. If there are no intersecting sets of cardinality larger than |H|,
hen the group G is said to have the ‘‘Erdős-Ko-Rado (EKR) Property’’. Indeed, such results are often
considered to be generalizations of the famous Erdős–Ko–Rado Theorem.

The most recent work in this area has turned to looking for groups that do not have the
EKR-property, this has led to trying to measure how far a group can be from having this property.
One way to do this is to use the intersection density of a group. This is a group parameter, introduced
n [16], defined for a transitive group G ≤ Sym(n), to be the rational number

ρ(G) := max
{

|F| n
|G|

: F ⊂ G is intersecting
}

.

Since G is transitive, the orbit–stabilizer lemma implies that the stabilizer of a point in G has
rder |G|

n . Since the stabilizer of a point is an intersecting set, ρ(G) ≥ 1 for any transitive group
. Further, a transitive permutation group has intersection density 1 if and only if it has the EKR
roperty. In [10] the authors initiate a program aimed at obtaining a deeper understanding of
he intersection density of transitive permutation groups, with a focus on groups not having the
KR-property. They find many interesting examples using actions with a cyclic point stabilizer.
In [3], the concept of intersection density was extended to vertex-transitive graphs. A graph X

s vertex transitive if its automorphism group Aut(X) acts transitively on the vertex set of X . The
ntersection density ρ(X) of a vertex-transitive graph X is the largest intersection density among the
ransitive subgroups of the automorphism group of the graph. Specifically, the intersection density
f a graph X is defined to be the rational number

ρ(X) := max {ρ(H) : H ≤ Aut(X),H transitive} . (1)

We note here that the intersection density parameter for vertex-transitive graphs only measures
he largest possible intersection density of a transitive subgroup; it does not take into account
ny smaller intersection densities from other transitive subgroups of automorphism. In [15], the
ntersection density of vertex-transitive graphs was further refined into the intersection density
rray. Given a vertex-transitive graph X = (V , E), the intersection density array of X is the increasing
equence of rational numbers

ρ(X) := [ρ1, ρ2, . . . , ρt ],

for some integer t ≥ 0, such that for any i ∈ {1, 2, . . . , t}, there exists a transitive subgroup
≤ Aut(X) such that ρi = ρ(K ) and for any transitive subgroup G ≤ Aut(X), there exists

i ∈ {1, 2, . . . , n} such that ρ(G) = ρi. This array gives a more robust way of viewing the intersection
property of the automorphism group. For example, the Petersen graph has intersection density 2,
whereas its intersection density array is [1, 2]. Another interesting example is the Tutte–Coxeter
graph; its intersection density is equal to 3

2 and its intersection density array is
[ 3
2

]
. That is, every

transitive subgroup of the automorphism group of the Tutte–Coxeter graph has intersection density
equal to 3

2 . A vertex-transitive graph X = (V , E) exhibiting this property, i.e. ρ(X) = [ρ1], is called
ntersection density stable .

In this paper, we continue the work in [3] to determine the intersection density, and if possible,
he intersection density array of the Kneser graphs. These are a well-known family of vertex-
ransitive graphs. For integers n and k, with n ≥ 2k, the Kneser graph K (n, k) has all the k-subsets of
1, 2, . . . , n} as its vertex set and two vertices are adjacent if they are disjoint. For n > 2k, it is well-
nown that Sym(n) is the automorphism group of K (n, k) (this is implied by the EKR theorem, see
7, Section 7.8]). Since Sym(n) is transitive on the k-sets of {1, 2, . . . , n}, the graph K (n, k) is vertex
ransitive. We want to determine the largest intersection density over all subgroups of Sym(n) that
re transitive on the k-subsets of {1, . . . , n} with n > 2k.
There has already been much work done to determine the intersection density of Sym(n) with

ts action on k-sets. The most general result is given by Ellis in [4], where it is shown that if n is
arge relative to k, then Sym(n) has intersection density 1 under this action. Ellis conjectured the
equirement that n be large relative to k is not necessary. Indeed, this has been confirmed for the
mallest values of k; for k = 2 this conjecture is proven in [17], and for k = 3, it is proven in [2].
2
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It is shown in [23] that the alternating group Alt(n) acting on 2-sets has intersection density 1,
rovided n ≥ 16. Using Sagemath, it is not hard to verify that this still holds for 6 ≤ n ≤ 15; but the
roup Alt(5) acting on the 2-sets does not have the EKR property, in fact it has intersection density
. Further, in [3] the authors prove that the alternating group acting on k-sets with k = 3, 4, 5 also
as intersection density 1 for n > 2k (they also determine the intersection density of some sporadic
roups that are also transitive on the k-sets).
To determine the intersection density of the graph K (n, k), it is necessary to determine the largest

ntersection density over all subgroups that are transitive on the k-sets. The next proposition follows
rom Theorem 14.6.2 of [6] and shows that the largest intersection density will be achieved by a
inimal (by inclusion) transitive subgroup.

roposition 1.1. Let G be a transitive group and let H be a transitive subgroup of G (where H has the
ame action as G). The intersection density of G is bounded above by the intersection density of H.

As stated above, the alternating group acting on 3-sets has intersection density 1 (see [3]), so
e have the following result.

heorem 1.2. Let n ≥ 7. If Alt(n) is the minimal transitive subgroup of Sym(n) under its action on
-sets, then K (n, 3) has intersection density equal to 1.

In this paper, we will consider values of n for which the alternating group is not the minimal
ransitive group on the 3-sets. A group that is transitive on the k-sets is called k-homogeneous,
learly any group that is 3-transitive is also 3-homogeneous. These groups have been classified and
e state two results on 3-homogeneous groups that motivate the choice of groups in this work.
he first result is taken from [8].

heorem 1.3. Let G ≤ Sym(n) be 3-transitive. If G is not equal to Alt(n) with n ≥ 5 nor Sym(n) with
≥ 7, then G is one of: ASLd(2), V16.Alt(7) (of degree 16), M11 (of degree 12), M22,Aut(M22), M23,
24 or

PSL2(q) ≤ G ≤ PΓ L2(q),

ith degree q + 1, where q is a prime power.

heorem 1.4 (Kantor [14]). Suppose that G is 3-homogeneous on a set of size n ≥ 6. Then G is
-transitive. Moreover, G is 3-transitive with the exception of

PSL2(q) ≤ G ≤ PΣL(2, q),

here n − 1 = q ≡ 3 (mod 4); and

G ∈ {AGL1(8),AΓ L1(8),AΓ L1(32)}.

For many values of n, the minimal transitive group on the 2-sets and 3-sets is PSL2(q) or contains
SL2(q) as a proper subgroup. In this paper we focus on these groups with their actions on 2 and
-sets. We note that some of the minimal subgroups in these two theorems are not transitive on the
-subsets. In particular G = PSL2(q), where q ≡ 1 (mod 4) in Theorem 1.4 is not 3-homogeneous.

. Background results

Our approach to this problem is to build a graph for each group that has the property that the
ocliques (independent sets) in the graph correspond exactly to the intersecting sets in the group.
hen the size of the maximum cocliques can be determined using algebraic techniques.
Given a group G and a subset C ⊂ G \ {1} with the property that x−1

∈ C whenever x ∈ C ,
ecall that the Cayley graph Cay(G, C) is the graph whose vertex set is G and two group elements g
nd h are adjacent if and only if hg−1

∈ C . If C has the additional property that gxg−1
∈ C for all
∈ G and x ∈ C , then we say that the Cayley graph Cay(G, C) is a normal Cayley graph. For any

3
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permutation group G, define the derangement graph, denoted by ΓG, to have the elements of G as
its vertices, and two vertices are adjacent if they are not intersecting. Then the maximum cocliques
in ΓG are exactly the maximum intersecting sets in G. We can also consider the complement of the
derangement graph (denoted ΓG); clearly the maximum cliques in ΓG are maximum intersecting
sets. The derangement graph is a Cayley graph with connection-set equal to the set der(G) of all
derangements (i.e., fixed-point-free permutations) of G. Further, since the connection-set der(G) of
ΓG is a union of conjugacy classes, ΓG is a normal Cayley graph. The derangement graph is also a
graph in an association scheme, namely the conjugacy class association scheme. Details are given in [6,
Chapter 3].

Since ΓG is a normal Cayley graph, its eigenvalues of can be calculated using the complex
irreducible characters of the group G. For details see [6, Chapter 14] or [22] as we only state the
formula here.

Theorem 2.1. Let G a permutation group. The eigenvalues of ΓG are

λχ =
1

χ (1)

∑
g∈der(G)

χ (g) (2)

where χ is taken over all irreducible characters of G.

A fascinating aspect of this approach is that frequently the eigenvalues of the derangement graph
can be used to determine very effective upper bounds on the size of cocliques and cliques in the
derangement graphs. The next results are two such bounds, before stating them we need some
notation. For a graph X on n vertices, a real symmetric n × n matrix M is compatible with X if
Mu,v = 0 whenever u and v are non-adjacent vertices in X . The adjacency matrix of a graph X on
n vertices is an n × n 01-matrix with (u, v)-entry equal to 1 if and only if u and v are adjacent in
X . The adjacency matrix is denoted by A(X) and is an example of a matrix compatible with X . The
sum of all the entries of a matrix M will be denoted by sum(M) and the trace by tr(M). In a graph
X , the size of the largest coclique is denoted by α(X), and the size of the largest clique by ω(X). The
all ones vector will be denoted by 1, and J will represent the all ones matrix (the sizes will be clear
from context).

Theorem 2.2 (Weighted Ratio Bound (Theorem 2.4.2 [6])). Let X be a connected graph. Let A be a matrix
compatible with X that has constant row and column sum d.

If the least eigenvalue of A is τ , then

α(X) ≤
|V (X)|
1 −

d
τ

.

Theorem 2.3 (Theorem 3.7.1 [6]). Let A = {A0 = I, A1, . . . , Ad} be an association scheme with d classes
nd let X be a graph with adjacency matrix A(X) =

∑
i∈T Ai, where T ⊂ {1, 2, . . . , d}. If C is a clique

in X, then

|C | ≤ max
M∈M

sum(M)
tr(M)

here M is the set of all positive semidefinite matrices in C[A] that are compatible with X.

The next result gives a simple method to test if a subgroup is an intersecting set.

Lemma 2.4. If H ≤ Sym(n) is a subgroup with no derangements, then H is an intersecting set.

Proof. If g, h ∈ H , then gh−1
∈ H and is not a derangement. This means that gh−1 has a fixed point,

thus g and h are intersecting. □

Finally, we state a well-known result about the transitivity of PSL2(q) on the 3-sets that proves
t is not 3-homogeneous.
4
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Lemma 2.5. If q ≡ 1 (mod 4), then PSL2(q) has two orbits on the 3-sets from {1, . . . , q + 1}.

In the next three sections we consider groups containing PSL2(q) acting on 3-sets of {1, 2, . . . , q+
1}. The first of these sections considers PGL2(q) where q is even (in this case PSL2(q) = PGL2(q)).
ection 4 considers two groups that contain PSL2(q) with q ≡ 1 (mod 4). In Section 5, we consider

PSL2(q) for q ≡ 3 (mod 4), since this is when PSL2(q) is transitive. Section 6 discusses PSL2(q) on
he 2-sets. Section 7 briefly considers the intransitive action of PSL2(q) on the 3-sets when q ≡ 1
mod 4).

. PGL2(q) acting on K (q + 1, 3) where q even

For q even, we can determine the exact intersection density of PGL2(q) acting on the 3-sets from
1, . . . , q + 1}.

heorem 3.1. Let q be even. The intersection density of PGL2(q) acting on the 3-sets is

1. q
6 , if q = 22ℓ+1;

2. q
2 , if q = 22ℓ.

We prove this result in two lemmas. The first is a construction of an intersecting set of the
required size.

Lemma 3.2. Consider the action of PGL2(q) on the 3-sets from {1, . . . , q + 1}. If q = 22ℓ there is an
ntersecting set of size 3q, and if q = 22ℓ+1 there is an intersecting set of size q.

roof. For all q = 2n the subgroup of PGL2(q) generated by the matrices of the form(
1 a
0 1

)
,

with a ∈ Fq, is a subgroup in which all non-identity elements have order 2. Thus, by Lemma 2.4,
these form an intersecting set under this action.

If q = 22ℓ then there is an x ∈ Fq with x3 = 1. The set of all matrices of the forms(
1 a
0 1

)
,

(
x a
0 x2

)
,

(
x2 a
0 x

)
with a ∈ Fq, is a subgroup with size 3q. Each of these vertices either has order 3, or has order 2
and fixes a point, so each fixes a 3-set. Thus, by Lemma 2.4, these matrices form an intersecting set
under this action. □

Using Theorem 2.3, we can show that the sets given in Lemma 3.2 are the largest possible
intersecting sets under the action of PGL2(q) on the 3-sets. We note that the stabilizer of PGL2(q)
acting on the 3-sets is isomorphic to Sym(3), for any prime power q. Henceforth, we denote the
stabilizer of a point of PGL2(q) acting on the 3-sets by Hq. Let Xq be the complement of the
derangement graph under this action. So the vertices of Xq are the elements of PGL2(q) and two
vertices g, h are adjacent if gh−1 is conjugate to an element in Hq. A clique in this graph is an
intersecting set under the action on the 3-sets.

The graph Xq is in the conjugacy class association scheme of PGL2(q); we denote this association
scheme by A. The matrix in A that corresponds to the conjugacy class of order 2 elements in Hq
will be denoted by A1, and A2 will denote the matrix corresponding to the conjugacy class of the
order 3 elements. This means that A(Xq) = A1 + A2. By Theorem 2.3, any clique in Xq is bounded by
the maximum of

sum(M)
tr(M)

taken over all positive semi-definite matrices M of the form M = dI + aA + bA .
1 2

5
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Table 1
Partial character table for PGL2(22ℓ), with eigenvalues for A1 and A2 .
Character ρ(1) ρ(α) ρ(1) ρ ′(1) π (χ )
Degree q + 1 q + 1 q 1 q − 1

Value on C1 (order 2) 1 1 0 1 −1
Eigenvalue of A1 q − 1 q − 1 0 q2 − 1 −(q + 1)

Value on C2 (order 3) 2 −1 1 1 0
Eigenvalue of A2 2q −q q + 1 q(q + 1) 0

Lemma 3.3. Consider the action of PGL2(q) on the 3-sets of {1, 2, . . . , q + 1}. If q = 22ℓ, then an
intersecting set under this action has at most 3q elements, and if q = 22ℓ+1 an intersecting set has at
most q elements.

Proof. We will apply Theorem 2.3. Let A be the conjugacy class association scheme for PGL2(q). We
will first find a positive semi-definite matrix M ∈ C[A] that is compatible with the complement
of the derangement graph of PGL2(q) under this action, and then we show that sum(M)

tr(M) equals the
ounds in the lemma.
Let Xq be the complement of the derangement graph, so Xq is the graph with the elements of

PGL2(q) as its vertices and two vertices g, h are adjacent if gh−1 is conjugate to an element in Hq
(where Hq is the stabilizer of a point under this action).

Let C1 be the conjugacy class of PGL2(q) that contains the elements in Hq of order two, and C2
the conjugacy class that contains the elements of order 3. Define A1 to be the matrix with rows
and columns indexed by the element of PGL2(q) and the entry (g, h) equal to 1 if gh−1

∈ C1 and
0 otherwise; a matrix A2 is defined similarly, but for C2. Both A1 and A2 are matrices in A. The
adjacency matrix of Xq is equal to A1 +A2, and any matrix in C[A] compatible with Xq has the form
M = dI + aA1 + bA2. If we set v = |PGL2(q)|, then

sum(M)
tr(M)

=
v(d + a|C1| + b|C2|)

vd
= 1 +

a
d
|C1| +

b
d
|C2|.

o we need to find values of a
d and b

d so that the eigenvalues of M are non-negative and sum(M)
tr(M) is

aximized.
The eigenvalues of A1 and A2 can be calculated easily from the character table of PGL2(q), as the

eigenvalue of Ai is simply

λχ (Ai) =
|Ci|χ (ci)
χ (id)

here ci ∈ Ci and χ an irreducible character of PGL2(q).
First consider when q = 22ℓ. The value of all the irreducible characters of PGL2(q) on these two

onjugacy classes are known, and recorded in Table 1 using the notation of [1].
By Theorem 2.3, a bound for the size of the cliques in Xq is given by the solution to the following

inear program (we use x and y in place of a
d and b

d ).

Maximize : 1 + x(q2 − 1) + yq(q + 1),
Subject to

− 1 ≤ x(q − 1) + 2yq
− 1 ≤ x(q − 1) − yq
− 1 ≤ y(q + 1)
− 1 ≤ −x(q + 1)

(3)

It is straight-forward to see that this is maximized at x =
1

q+1 and y =
2

q+1 to give a maximum
alue of 3q.
6
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Table 2
Partial character table for PGL2(22ℓ+1), with eigenvalues for A1 and A2 .
Character ρ(α) ρ(1) ρ ′(1) π (1) π (χ )
Degree q + 1 q 1 q − 1 q − 1

Value on C1 (order 2) 1 0 1 −1 −1
Eigenvalue of A1 q − 1 0 q2 − 1 −(q + 1) −(q + 1)

Value on C2 (order 3) 0 −1 1 −2 1
Eigenvalue of A2 0 −(q − 1) q(q − 1) −2q q

For q = 22ℓ+1, the values that the irreducible characters take on the conjugacy classes with order
2 and 3 are given in Table 2.

The solution of the following linear optimization is a bound on the size of the maximum clique
in Xq.

Maximize 1 + x(q2 − 1) + yq(q − 1),
Subject to

− 1 ≤ x(q − 1)
− 1 ≤ −y(q − 1)
− 1 ≤ −x(q + 1) − 2yq
− 1 ≤ −x(q + 1) + yq.

(4)

It is straight-forward to solve this linear program, it is maximized at x =
1

q+1 and y = 0, giving
maximum value of q. □

. The subgroups containing PSL2(q) on K (q + 1, 3) when q ≡ 1 (mod 4)

In this section, we consider the subgroups of the automorphism group of K (q+ 1, 3) containing
SL2(q) for a prime power q ≡ 1 (mod 4). In this case, PSL2(q) is intransitive, so we consider the
wo minimally transitive subgroups of the automorphism group of K (q + 1, 3) containing it. The
irst one of these groups of course is PGL2(q). The other minimally transitive group is described
s follows. If q = pk for some even number k and an odd prime p, then the outer automorphism
roup of PSL2(q) is ⟨α⟩ × ⟨τ ⟩ ∼= C2 × Ck, where α and τ have order 2 and k, respectively. The other
inimally transitive subgroup containing PSL2(q) is the group PSL2(q)⟨ατ

k
2 ⟩. For both groups the

stabilizer of a 3-set has size 6 and is isomorphic to Sym(3).
We start this section with a note about the structure of the derangement graph ΓG where G is

either PGL2(q), or PSL2(q)⟨ατ
k
2 ⟩. A graph X = (V (X), E(X)) is a join of two vertex-disjoint graphs Y

nd Z , denoted X = Y∨Z , if V (X) = V (Y )∪V (Z) and E(X) = E(Y )∪E(Z)∪{(y, z) | y ∈ V (Y ), z ∈ V (Z)}.
That is, X is obtained by taking the disjoint union of Y and Z , and adding all the possible edges
between the vertices of Y and Z . We will show that ΓG is a join, to prove this we need to define an
operation on the 3-sets.

The group PSL2(q) acts on the lines (i.e., 1-dimensional subspaces of F2
q). These lines can be

represented as homogeneous coordinates of the form u = (u1, u2). For any two vectors u, v we
an define D(u, v) = u1v2 − u2v1 and for any ordered triple of lines (u, v, w) consider

D(u, v, w) := D(u, v)D(v, w)D(w, u).

ote that

D(v, u, w) = D(v, u)D(u, w)D(w, v) = −D(u, v)D(v, w)D(w, u) = −D(u, v, w).

his value is invariant under scalar multiplication and the action of PSL2(q). If q ≡ 1 (mod 4) then
1 is a square and for every triple this value will be either a square or a non-square—this shows

hat the action of PSL (q) has 2 orbits (of equal length by normality) on the 3-sets when q ≡ 1
2

7
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(mod 4). Consider G ∈ {PGL2(q), PSL2(q)⟨ατ
k
2 ⟩}. Any element of G\PSL2(q) will map 3-sets from one

rbit to the other orbit. This implies that the elements in G\PSL2(q) are all derangements, and all
he elements of G that fix a 3-set are contained in the subgroup PSL2(q). Of these elements, the ones
f order 2 are always contained in a single conjugacy class of PSL2(q), that we denote by C1; this is
lso a conjugacy class in G. The elements of order 3 are also contained in a single conjugacy class
enoted C2, unless q = 3ℓ. If q = 3ℓ, then the elements of order 3 are split between two conjugacy
lasses, C ′

2 and C ′′

2 in PSL2(q) and these conjugacy classes are closed under inversion if and only if ℓ

s even. For all values of q, the elements of order 3 are all contained in a single conjugacy class C2

f G. In the case that q is a power of 3, C2 = C ′

2 ∪ C ′′

2 .
For any g ∈ PSL2(q) and any h ∈ G\PSL2(q), it follows that gh−1

∈ G\PSL2(q). Since all the
lements in G\PSL2(q) are derangements, this means that the vertices corresponding to g and h are
djacent in ΓG. From this we can see ΓG = X ∨X where X is the subgraph induced by permutations
SL2(q). In X , vertices g, h are adjacent if gh−1 is not conjugate, in G, to an element in the stabilizer
f a 3-set. So vertices g, h ∈ X are adjacent if gh−1 is not in one of the conjugacy classes, C1 or C2 in
. This shows that ΓPGL2(q) and Γ

PSL2(q)⟨ατ
k
2 ⟩

are isomorphic since they are both isomorphic to a join

f two copies of X . Further, since a coclique of ΓG = X ∨ X must lie in a copy of X , the cocliques in
G are exactly the cocliques in the subgraph induced by the elements of PSL2(q).

emma 4.1. Let q ≡ 1 (mod 4) and G ∈ {PGL2(q), PSL2(q)⟨ατ
k
2 ⟩}. Then ΓG, with the action on the

3-sets, is the join of two copies of a graph X. The vertices of X are the elements of PSL2(q) and two
lements are adjacent if they are not conjugate, in G, to an element in the stabilizer of a 3-set.

Note that if q = 32ℓ, then X is not the same as the derangement graph from the action of PSL2(q)
cting on the 3-sets (which is the action considered in the next section). In the graph ΓPSL2(q), with

the action on the 3-sets, two vertices g, h are adjacent if gh−1 is in C1 or C ′

2 (but not in C ′′

2 ). We will
onsider the intersection density of the intransitive subgroup PSL2(q) in Section 7.
For the remainder of this section, we only consider PGL2(q), since the derangement graphs are

somorphic, the same results will hold for PSL2(q)⟨ατ
k
2 ⟩. The size of PGL2(q) is (q − 1)q(q + 1), and

he stabilizer of a 3-set is Hq ∼= Sym(3). We start with the case where q ≡ 1 (mod 4) is a power of
. We note that this implies that q = 32ℓ.

heorem 4.2. If q = 32ℓ, for some positive integer ℓ, then the intersection density of PGL2(q) with its
ction on 3-sets of {1, . . . , q + 1} is q

3 .

roof. First, the set of matrices of the forms(
1 x
0 1

)
,

(
1 x
0 −1

)
,

ith x ∈ Fq, form a subgroup that is an intersecting set of size 2q with the action of PGL2(q) on the
-sets.
Next we will use Theorem 2.3, with the method in the previous section to show that 2q is

n upper bound on the size of a clique in Xq. Again, define a graph Xq whose vertices are the
lements of PGL2(q) and two vertices g, h are adjacent if gh−1 is in one the conjugacy classes that
ontain elements from Hq. Using the same notation as in the proof of Lemma 3.3, this implies that
(Xq) = A1 + A2.
Table 3 gives the values of all the irreducible characters of PGL2(q), this is taken from [1] and

e use the same notation.
8
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Table 3
Partial character table for PGL2(32ℓ), with eigenvalues for A1 and A2 .
Character ρ(α) ρ(α) ρ(α) ρ ′(α) π (χ )
Dimension q + 1 q + 1 q 1 q − 1

Value on C1 2 −2 1 1 0
Eigenvalue of A1 q −q q+1

2
q(q+1)

2 0

Value on C2 1 1 0 1 −1
Eigenvalue A2 q − 1 q − 1 0 q2 − 1 −(q + 1)

The linear optimization problem we need to solve is the following:

Maximize 1 + x(q2 − 1) + y
q(q + 1)

2
,

Subject to

− 1 ≤ x
(q2 − 1)
q + 1

+ 2y
q(q + 1)
2(q + 1)

= x(q − 1) + yq

− 1 ≤ x
(q2 − 1)
q + 1

− 2y
q(q + 1)
2(q + 1)

= x(q − 1) − yq

− 1 ≤ y
q(q + 1)

2q
= y

q + 1
2

− 1 ≤ x(q2 − 1) + y
q(q + 1)

2

− 1 ≤ x
−(q2 − 1)

q − 1
= −x(q + 1)

(5)

This linear program can be easily solved to see that the objective function is maximized at
x =

1
q+1 and y =

2
q+1 with a value of

1 +
1

q + 1
(q2 − 1) +

2
q + 1

q(q + 1)
2

= 1 + (q − 1) + q = 2q. □

Next, we show that there is an intersecting set of size twice the order of the stabilizer of a 3-set
in PGL2(q), for any q ≡ 1 (mod 4).

Lemma 4.3. If q ≡ 1 (mod 4), then there is an intersecting set of size 12 in PGL2(q) with the action
n the 3-sets of {1, . . . , q + 1}.

roof. The group PGL2(q) has a subgroup isomorphic to Alt(4). Each of the elements in Alt(4) have
rder either 2 or 3, so all the element of order 3 fix at least one 3-set. Further, since q ≡ 1 (mod 4),
ny element with order 2 has q−1

2 2-cycles. This means any such permutation has two fixed points,
o it will also fix a 3-set. Thus by Lemma 2.4, this subgroup is an intersecting set. □

We conjecture that the intersecting sets in Lemma 4.3 are the largest.

onjecture 4.4. If q is not a power of 2 or 3, and q ≡ 1 (mod 4), then the intersection density of
GL2(q) acting on the 3-sets from {1, . . . , q + 1} is 2.

. PSL2(q) on K (q + 1, 3) when q ≡ 3 (mod 4)

Next we will consider the group PSL2(q) acting on 3-sets from {1, . . . , q + 1} where q ≡ 3
(mod 4). This action is transitive, and the stabilizer of a 3-set in PSL2(q) has size 3 and is isomorphic
to Z3.

First we consider when q is a power of 3. Since we are only considering q ≡ 3 (mod 4) in this
section, q must be an odd power of 3.
9
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Table 4
Partial character table PSL2(32ℓ+1).
Character ρ ′(1) ρ(1) ρ(α) π (χ ) π (χ ) ω±

0
Dimension 1 q q + 1 q − 1 q − 1 q−1

2

Value on c3(x) q−3
4

q−3
4 −1 0 0 0

Eigenvalue q(q+1)(q−3)
4

(q+1)(q−3)
4 −q 0 0 0

Value on c4(x) q−3
4 −

q−3
4 0 0 2 0

Eigenvalue q(q−1)(q−3)
4 −

(q−1)(q−3)
4 0 0 2q 0

Theorem 5.1. If q = 32ℓ+1 the intersection density of PSL2(q) under the action on 3-sets is q
3 .

roof. First there is an intersecting set of size q given by the subgroup of matrices with the form(
1 x
0 1

)
where x ∈ Fq.

We define the derangement graph ΓPSL2(q), as usual, with the elements of PSL2(q) as its vertices,
nd two vertices g, h are adjacent if gh−1 is a derangement. A maximum intersecting set of the
roup is a maximum coclique in this graph. Using Theorem 2.2, we will show a coclique in ΓPSL2(q)
s no larger than q, so the subgroup above is the largest possible intersecting set. In [1] the conjugacy
lasses of PSL2(q) are grouped into families; the families denoted by c3(x) (with x ̸= 1 and x2 ̸= −1)
and c4(x) are exactly the derangements under this action. In Table 4, we record the sums of the
values of the irreducible characters over the conjugacy classes in each family.

From this, it is straight-forward to find the eigenvalues of a matrix compatible with ΓPSL2(q). If
we set the weight on the conjugacy classes of type c3(x) to be a =

1
q and weight of the conjugacy

class of type c4(z) to be b =
(q+3)
q(q−3) , then the largest eigenvalue of the weighted adjacency matrix is

1
q
q(q + 1)(q − 3)

4
+

(q + 3)
q(q − 3)

q(q − 1)(q − 3)
4

=
q2 − 1

2
− 1,

and the smallest is −1 (from both ρ(1) and ρ(α)). Then the ratio bound gives the size of the largest
oclique

(q − 1)q(q + 1)

2( q
2−1
2 )

= q. □

This group action has also been considered in [10], where an exact value has been determined
for some values of q.

Theorem 5.2 (Theorem 6.1, [10]). Consider PSL2(q) with its action on 3-sets. If q = pℓ with q ≡ 1
mod 3) then

ρ(G) =

{
4/3 if p ̸= 5,
2 if p = 5.

If q is such that q ≡ 3 (mod 4) and q ≡ 2 (mod 3) then q ≡ 11 (mod 12). For q ≡ 11 (mod 12),
a simple calculation shows that q2 ≡ 1 (mod 5) or q2 ≡ 4 (mod 5).

Lemma 5.3. If q2 ≡ 1 (mod 5) then the density of PSL2(q) with its action on 3-sets is at least 4/3.

Proof. If q2 ≡ 1 (mod 5) then PSL2(q) contains a copy of Alt(5). The subgroup Alt(5) has an
intersecting set of size 4. An example of such a set is

{id, (1, 2, 3), (1, 2, 4), (1, 2, 5)}.
The subgraph induced by this subset of PSL2(q) is a clique of size 4 under this action. □

10
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We end this section with a conjecture on the intersection density of the group PSL2(q) with its
ction on the 3-sets, when q2 ≡ ±1 (mod 5).

onjecture 5.4. If q2 ≡ 1 (mod 5) then the intersection density of PSL2(q) with its action on 3-sets is
/3; if q2 ≡ 4 (mod 5) then the intersection density of this action is 1.

. PSL2(q) acting on the Kneser graph K (q + 1, 2)

Both the groups PGL2(q) and PSL2(q) are transitive subgroups of the automorphism group of
(q+ 1, 2) where q is a prime power. We will only consider PSL2(q) since it would have the larger
ntersection density of the two. If q is odd, the size of the stabilizer of a point on PSL2(q) under the
ction on 2-sets has size

(q − 1)q(q + 1)
2

(
q + 1
2

)−1

= q − 1,

nd if q is even it is

(q − 1)q(q + 1)
(
q + 1
2

)−1

= 2(q − 1).

emma 6.1. For q even, the group PSL2(q) acting on 2-sets from {1, . . . , q+1} has intersection density
q
2 .

Proof. Since q is even, any element that fixes exactly one point has order 2, and also fixes a 2-set.
learly any element with two fixed points also fixes a 2-set. Thus every element in the stabilizer of
point in PSL2(q), in its action on the points {1, . . . , q+1}, also fixes a 2-set from {1, . . . , q+1}. So

the stabilizer of a point in the natural action is also an intersecting set under the action on 2-sets
and it has size q(q − 1).

We will use the ratio bound, Theorem 2.2, to show that this is the largest possible intersecting
set. Still using the notation of [1], only the conjugacy classes of type c4(z) are derangements with
this action and the eigenvalues of the derangement graph are{

q2(q − 1)
2

, 0, −
q(q − 1)

2
, q

}
.

he ratio between the largest and the smallest eigenvalue is −q, so by the ratio bound, Theorem 2.2,
he size of a maximum coclique cannot be any larger than

(q − 1)q(q + 1)
1 − (−q)

= (q − 1)q.

This implies the intersection density is

q2 − q
2(q − 1)

=
q
2
. □

For values of q smaller than 32 we have done some calculations of the intersection density, and
ased on these calculations we make the following conjecture.

onjecture 6.2. For q ≡ 1 (mod 4) the action of the group PSL2(q) on 2-sets has intersection density
.

The case for q ≡ 3 (mod 4) seems more complicated, we did find groups that had larger
ntersecting sets, but we did not find a general construction.

emma 6.3. For q = 7 the group Alt(4) is an intersecting subgroup in PSL2(q) and the intersection
ensity is at least 2. For q = 31 the group Alt(5) is an intersecting subgroup in PSL2(q) and the
ntersection density is at least 2.
11
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Table 5
Calculations for intersection density of PSL2(q) acting on a single orbit of 3-sets when
q ≡ 1 (mod 4).
q Max. intersecting Lower bound on density Intersection density

set found of PSL2(q) on Hq of PGL2(q) on Hq

5 12 2 2
9 15 5/2 3
13 12 2 2
17 12 2 2
25 12 2 2

The second part of Lemma 6.3 is Example 2.2 in [16], in this paper the authors show that there
re no larger intersecting subgroups, but there may be larger intersecting subsets. There are larger
alues of q for which PSL2(q) contains Alt(4) or Alt(5) as intersecting subgroup, but in these groups,

the stabilizer under the action on 2-sets is larger than either Alt(4) or Alt(5); so these subgroups
do not give an intersection density above 1. This leaves us with the following question.

Question 6.4. For q ≡ 3 (mod 4) and q > 31, does the group PSL2(q) have intersection density larger
han 1 with its action on the 2-sets?

Finally, we also make a conjecture about the intersection density of PGL2(q), even though the
aximum intersection density of the Kneser graph would be given by the group PSL2(q). From our
omputations, this conjecture seems true for q ≤ 27.

onjecture 6.5. For q odd the group PGL2(q) with its action on the 2-sets of {1, . . . , q + 1} has
ntersection density 1.

. The intransitive action of PSL2(q) on K (q + 1, 3)

If q ≡ 1 (mod 4), then PSL2(q) is not transitive on the 3-sets, but we can consider the action of
he PSL2(q) on one of its orbits of 3-sets. The stabilizer of a 3-sets under this action is a subgroup
q, isomorphic to Sym(3). If q = 3ℓ then the conjugacy class of elements of order three splits into
conjugacy classes in PSL2(q). If ℓ is even then these classes are closed under inverses, so all the
rder three elements of Hq belong to only one of these conjugacy classes; if ℓ is odd these conjugacy
lasses are not closed under inverses. We have done some computer searches for intersecting sets
nder this action. Our results are recorded in Table 5.
We consider the group PGL2(9) more carefully; it is an example where there are 2 conjugacy

lasses of elements of order three and each such class is closed under inverses.

xample 7.1. The group PSL2(9) acting on Sym(3) has an intersecting set of size 15. The elements
n this set are the following:

id
(1, 2)(5, 10)(6, 9)(7, 8) (1, 2)(3, 4)(5, 7)(8, 10)
(1, 10)(2, 7)(3, 6)(5, 8) (1, 7)(2, 10)(4, 9)(5, 8)
(1, 5)(2, 8)(4, 6)(7, 10) (1, 8)(2, 5)(3, 9)(7, 10)
(1, 4, 2)(5, 8, 6)(7, 10, 9) (1, 2, 4)(5, 6, 8)(7, 9, 10)
(1, 6, 2)(3, 10, 7)(4, 5, 8) (1, 2, 6)(3, 7, 10)(4, 8, 5)
(1, 3, 2)(5, 9, 8)(6, 10, 7) (1, 2, 3)(5, 8, 9)(6, 7, 10)
(1, 9, 2)(3, 8, 5)(4, 7, 10) (1, 2, 9)(3, 5, 8)(4, 10, 7)

Any pair of order 2 elements in a single row generate a subgroup isomorphic to C2×C2. Any other
pair of order 2 elements generates a subgroup isomorphic to Sym(3). Any pair of order 3 elements
in a single row are inverses, so generate a copy of C3; any pair of order 3 element not in a row
generate a subgroup isomorphic to Alt(4). Finally, an element of order 2 and an element of order
12
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3 generate subgroups isomorphic to either Sym(3) or Alt(4). If an element of order two generates
a subgroup isomorphic to Sym(3) with an element of order 3, then the other element of order two
in the same row generates a subgroup isomorphic to Alt(4) with the element of order 3.

8. Conclusions and further work

In this paper, we initiated the study of intersection density of the Kneser graphs K (n, 3) and
(n, 2). Our main focus is the 3-homogeneous groups containing the almost simple group PSL2(q),
or some prime power q. The group PSL2(q) is not transitive in its action on the 3-sets when q ≡ 1
mod 4); for other values of q modulo 4, it is transitive on 3-sets.

From Theorems 1.3 and 1.4, in the case n = 2ℓ
+1 for some ℓ, the minimal 3-transitive subgroups

n {1, . . . , n} are PGL2(2ℓ). Theorem 3.1 gives the exact values of the intersection density of K (n, 3)
n this case.

heorem 8.1. The intersection density of K (2ℓ
+ 1, 3) is 3(2ℓ) if ℓ is even, and 2ℓ if ℓ is odd.

Further, provided that 3ℓ
+1 ̸= 2d for some d, the smallest 3-transitive subgroup is PGL2(3ℓ), this,

ith Theorems 4.2 and 5.1, gives the intersection density of K (3ℓ
+ 1, 3). In 2004, Mihăilescu [20]

roved the Catalan conjecture, which asserts that the only solution to the equation xa = yb + 1,
here (x, y) ∈ N × N and a, b > 1, is the pair (x, y) = (3, 2) with a = 2 and b = 3. Therefore, we
an see that 3ℓ

+ 1 ̸= 2d unless ℓ = 1 and d = 2.

heorem 8.2. If ℓ > 1, then the intersection density of K (3ℓ
+ 1, 3) is 3ℓ−1.

The next project is to calculate the intersection density of ASLd(2) with its action on the 3-sets.
n particular, we would like to determine if there exists a weighted adjacency matrix for the action
f ASLd(2) on the 3-sets, for all values of d, for which the ratio bound can be used to prove that the
tabilizers are the largest intersecting sets. This means the question of the intersection density of
(2ℓ, 3) is still open, as is the question which groups achieve the largest density.

uestion 8.3. Does the subgroup PGL2(q) give the maximum intersection density of K (q + 1, 3) for q
prime power with q ≡ 1 (mod 4)?

In the case that q ≡ 3 (mod 4), we conjecture that the group PSL2(q) gives the maximum
ntersection density.

onjecture 8.4. For q a prime power with q ≡ 3 (mod 4), the group PSL2(q) gives the maximum
ntersection density among all subgroups of automorphism of K (q + 1, 3). If q2 = 1 (mod 5) then
he intersection density of K (q + 1, 3) is 4/3, and if q2 = 4 (mod 5) then the intersection density of
(q + 1, 3) is 1.

We would like to determine the intersection density of the other groups acting transitively
n the 3-sets. Using Sagemath [26], we verified that AGL1(8) and AΓ L1(8) with their actions on
he 3-sets both have intersection density 1. The groups V16.Alt(7) has intersection density 1 (via
agemath [26] and Gurobi [9]) and AΓ L1(32) has intersection density 1, as it is regular. The group
11(12) has intersection density 1 (this was verified by determining that the maximum coclique

n the subgraph of the derangement graph induced by the non-neighbours of the identity has size
5.)
Using Gurobi [9], there exists a weighted adjacency matrix for the derangement graph so that

he ratio bound holds with equality for the groups (with the action on the 3-sets) ASL3(2), ASL4(2)
nd M24. It can be further determined that the derangement graph for groups M11, M22 and M23 do

not have such a weighted adjacency matrix. We still have yet to determine the intersection density
of the Mathieu groups, M22 and M23, and the group Aut(M22) with their action on the 3-sets. Putting
these calculations together, we get the following lemma.

Lemma 8.5. The groups AGL1(8), AΓ L1(8), AΓ L1(32), ASL3(2), ASL4(2), V16.Alt(7), M11(12) and M24
cting on the 3-sets have intersection density 1.
13
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Table 6
Intersection array for some Kneser graphs.
Kneser graph Array

K (7, 3) [1]
K (8, 3) [1, 4/3]
K (9, 3) [1, 4/3]
K (10, 3) [1, 3]

K (17, 3) [1, 2, 4, 8]
K (26, 3) [1, 2]
K (28, 3) [1, 3, 9]

As stated in the introduction, the notion of intersection density has been generalized by Kutnar,
arušič and Pujol in [15] to an intersection density array. For a vertex-transitive graph, this array
onsists of the intersection densities for all transitive subgroups of the automorphism group of
he graph. The intersection density of a graph is the largest entry in this array, but the entire
ntersection density array for the Kneser graphs is unknown in general. If Alt(n) is the smallest
ransitive automorphism of K (n, k), then the intersection density array of K (n, k) is [1]; in this
ase K (n, k) is intersection density stable and has the EKR-property. In this paper we give several
examples of Kneser graphs that have intersection density greater than 1 and hence do not have
the EKR property. For these graphs we would like to determine the entire intersection density
array. For small Kneser graphs, using GAP [25], we were able to compute the entire array, these
re recorded in Table 6. In the examples we checked, with the exception of q = 8, all the groups G
ith PSL2(q) ≤ G ≤ PΓ L2(q), the size of the largest coclique in G is the same as the size of largest

coclique in PSL2(q).
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