The data in each file is presented as a table where
-
\(n\): is the degree of the transitive group
-
\(k\): is the number in the library of transitive groups in
Sagemath
-
Description: the structure description of the group
-
Density: the intersection density of \(\operatorname{TransitiveGroup}(n,k)\)
-
Information: this entry either is either Abelian (in which case the intersection density is \(1\) and the group is regular) or a link to a file containing further information on the derangement graph of \(\operatorname{TransitiveGroup}(n,k)\).
n | k | Description | Density | Information |
---|---|---|---|---|
14 | 1 | C14 | 1 | Abelian |
14 | 2 | D7 | 1 | details |
14 | 3 | D14 | 1 | details |
14 | 4 | C7 : C6 | 1 | details |
14 | 5 | C2 x (C7 : C3) | 1 | details |
14 | 6 | (C2 x C2 x C2) : C7 | 2 | details |
14 | 7 | C2 x (C7 : C6) | 1 | details |
14 | 8 | C7 x D7 | 1 | details |
14 | 9 | C2 x ((C2 x C2 x C2) : C7) | 1 | details |
14 | 10 | PSL(3,2) | 1 | details |
14 | 11 | (C2 x C2 x C2) : (C7 : C3) | 1 | details |
14 | 12 | (C7 x C7) : C4 | 1 | details |
14 | 13 | D7 x D7 | 1 | details |
14 | 14 | (C7 x C7) : C6 | 1 | details |
14 | 15 | (C7 x C7) : S3 | 1 | details |
14 | 16 | PSL(3,2) : C2 | 1 | details |
14 | 17 | C2 x PSL(3,2) | 1 | details |
14 | 18 | C2 x ((C2 x C2 x C2) : (C7 : C3)) | 1 | details |
14 | 19 | C2 x PSL(3,2) | 1 | details |
14 | 20 | (C7 x C7) : D4 | 1 | details |
14 | 21 | (C2 x C2 x C2 x C2 x C2 x C2) : C7 | 2 | details |
14 | 22 | (C7 x C7) : (C3 : C4) | 1 | details |
14 | 23 | (C7 x C7) : C12 | 1 | details |
14 | 24 | (C7 x C7) : (C6 x C2) | 1 | details |
14 | 25 | (C7 x C7) : D6 | 1 | details |
14 | 26 | (C7 x C7) : (C3 x S3) | 1 | details |
14 | 27 | ((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2 | 1 | details |
14 | 28 | ((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2 | 1 | details |
14 | 29 | C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : C7) | 1 | details |
14 | 30 | PSL(2,13) | 1 | details |
14 | 31 | (C7 x C7) : ((C6 x C2) : C2) | 1 | details |
14 | 32 | (C7 x C7) : (C3 x D4) | 1 | details |
14 | 33 | (C2 x C2 x C2) . PSL(3,2) | 1 | details |
14 | 34 | (C2 x C2 x C2) : PSL(3,2) | 1 | details |
14 | 35 | (C2 x C2 x C2 x C2 x C2 x C2) : (C7 : C3) | 1 | details |
14 | 36 | (C7 x C7) : (C3 x (C3 : C4)) | 1 | details |
14 | 37 | (C7 x C7) : (C6 x S3) | 1 | details |
14 | 38 | C2 x (((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2) | 1 | details |
14 | 39 | PSL(2,13) : C2 | 1 | details |
14 | 40 | (((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2) : C3 | 1 | details |
14 | 41 | (((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2) : C3 | 1 | details |
14 | 42 | C2 x ((C2 x C2 x C2) . PSL(3,2)) | 1 | details |
14 | 43 | C2 x ((C2 x C2 x C2) : PSL(3,2)) | 1 | details |
14 | 44 | C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : (C7 : C3)) | 1 | details |
14 | 45 | (C7 x C7) : (C3 x ((C6 x C2) : C2)) | 1 | details |
14 | 46 | S7 | 1 | details |
14 | 47 | C2 x A7 | 1 | details |
14 | 48 | C2 x ((((C2 x C2 x C2 x C2 x C2 x C2) : C7) : C2) : C3) | 1 | details |
14 | 49 | C2 x S7 | 1 | details |
14 | 50 | (C2 x C2 x C2 x C2 x C2 x C2) : PSL(3,2) | 1 | details |
14 | 51 | C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : PSL(3,2)) | 1 | details |
14 | 52 | (PSL(3,2) x PSL(3,2)) : C2 | 1 | details |
14 | 53 | (C2 x C2 x C2 x C2 x C2 x C2) : A7 | 1 | details |
14 | 54 | (C2 x C2 x C2 x C2 x C2 x C2) : S7 | 1 | details |
14 | 55 | (C2 x C2 x C2 x C2 x C2 x C2) : S7 | 1 | details |
14 | 56 | C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : A7) | 1 | details |
14 | 57 | C2 x ((C2 x C2 x C2 x C2 x C2 x C2) : S7) | 1 | details |
14 | 58 | (A7 x A7) : C2 | 1 | details |
14 | 59 | (A7 x A7) : C4 | 1 | details |
14 | 60 | (A7 x A7) : (C2 x C2) | 1 | details |
14 | 61 | (A7 x A7) : D4 | 1 | details |
14 | 62 | A14 | 1 | details |
14 | 63 | S14 | 1 | details |